enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    In regression analysis, logistic regression[1] (or logit regression) estimates the parameters of a logistic model (the coefficients in the linear or non linear combinations). In binary logistic regression there is a single binary dependent variable, coded by an indicator variable, where the two values are labeled "0" and "1", while the ...

  3. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function, then the characteristic function is the Fourier transform (with sign reversal) of the probability density function.

  4. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    Autoregressive moving-average model. In the statistical analysis of time series, autoregressive–moving-average (ARMA) models are a way to describe of a (weakly) stationary stochastic process using autoregression (AR) and a moving average (MA), each with a polynomial. They are a tool for understanding a series and predicting future values.

  5. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a ...

  6. Graphical model - Wikipedia

    en.wikipedia.org/wiki/Graphical_model

    t. e. A graphical model or probabilistic graphical model (PGM) or structured probabilistic model is a probabilistic model for which a graph expresses the conditional dependence structure between random variables. They are commonly used in probability theory, statistics —particularly Bayesian statistics —and machine learning.

  7. Statistical data type - Wikipedia

    en.wikipedia.org/wiki/Statistical_data_type

    The data type is a fundamental concept in statistics, and controls what sorts of probability distributions can logically be used to describe the variable, the permissible operations on the variable, the type of regression analysis used to predict the variable, etc. The concept of data type is similar to the concept of level of measurement, but ...

  8. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The convolution/sum of probability distributions arises in probability theory and statistics as the operation in terms of probability distributions that corresponds to the addition of independent random variables and, by extension, to forming linear combinations of random variables. The operation here is a special case of convolution in the ...

  9. Marginal distribution - Wikipedia

    en.wikipedia.org/wiki/Marginal_distribution

    Marginal distribution. In probability theory and statistics, the marginal distribution of a subset of a collection of random variables is the probability distribution of the variables contained in the subset. It gives the probabilities of various values of the variables in the subset without reference to the values of the other variables.

  1. Related searches explain the use of variables in probability analysis and statistics in python

    how to use probability theorycharacteristic function probability
    probability theory examplestypes of probability theory