Search results
Results from the WOW.Com Content Network
Heat treatment techniques include annealing, case hardening, precipitation strengthening, tempering, carburizing, normalizing and quenching. Although the term heat treatment applies only to processes where the heating and cooling are done for the specific purpose of altering properties intentionally, heating and cooling often occur incidentally ...
For high volume process annealing, gas fired conveyor furnaces are often used. For large workpieces or high quantity parts, car-bottom furnaces are used so workers can easily move the parts in and out. Once the annealing process is successfully completed, workpieces are sometimes left in the oven so the parts cool in a controllable way.
The process of quenching is a progression, beginning with heating the sample. Most materials are heated to between 815 and 900 °C (1,499 and 1,652 °F), with careful attention paid to keeping temperatures throughout the workpiece uniform. Minimizing uneven heating and overheating is key to imparting desired material properties.
Steel can be softened to a very malleable state through annealing, or it can be hardened to a state as hard and brittle as glass by quenching. However, in its hardened state, steel is usually far too brittle, lacking the fracture toughness to be useful for most applications. Tempering is a method used to decrease the hardness, thereby ...
Common heat treatment processes include annealing, precipitation strengthening, quenching, and tempering: [32] Annealing process softens the metal by heating it and then allowing it to cool very slowly, which gets rid of stresses in the metal and makes the grain structure large and soft-edged so that, when the metal is hit or stressed it dents ...
Annealing may refer to: Annealing (biology), in genetics; Annealing (glass), heating a piece of glass to remove stress; Annealing (materials science), a heat treatment that alters the microstructure of a material; Quantum annealing, a method for solving combinatorial optimisation problems and ground states of glassy systems
This cycle can be started from either the forward or backward side of the strand using the appropriate primer. Once this cycle has begun, the strand undergoes self-primed DNA synthesis during the elongation stage of the amplification process. This amplification takes place in less an hour, under isothermal conditions between 60 and 65 °C.
Dexter (also known as Dexter exchange or collisional energy transfer, colloquially known as Dexter Energy Transfer) is another dynamic quenching mechanism. [12] Dexter electron transfer is a short-range phenomenon that falls off exponentially with distance (proportional to e −kR where k is a constant that depends on the inverse of the van der Waals radius of the atom [citation needed]) and ...