Search results
Results from the WOW.Com Content Network
One particular solution is x = 0, y = 0, z = 0. Two other solutions are x = 3, y = 6, z = 1, and x = 8, y = 9, z = 2. There is a unique plane in three-dimensional space which passes through the three points with these coordinates, and this plane is the set of all points whose coordinates are solutions of the equation.
The solution set for the equations x − y = −1 and 3x + y = 9 is the single point (2, 3). A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied.
The simplified equation is not entirely equivalent to the original. For when we substitute y = 0 and z = 0 in the last equation, both sides simplify to 0, so we get 0 = 0, a mathematical truth. But the same substitution applied to the original equation results in x/6 + 0/0 = 1, which is mathematically meaningless.
The graph of the logarithm to base 2 crosses the x axis (horizontal axis) at 1 and passes through the points with coordinates (2, 1), (4, 2), and (8, 3). For example, log 2 (8) = 3, because 2 3 = 8. The graph gets arbitrarily close to the y axis, but does not meet or intersect it.
More generally, the solutions of a linear equation in n variables form a hyperplane (a subspace of dimension n − 1) in the Euclidean space of dimension n. Linear equations occur frequently in all mathematics and their applications in physics and engineering, partly because non-linear systems are often well approximated by linear equations.
The solution = is in fact a valid solution to the original equation; but the other solution, =, has disappeared. The problem is that we divided both sides by x {\displaystyle x} , which involves the indeterminate operation of dividing by zero when x = 0. {\displaystyle x=0.}
A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula
Example with infinitely many solutions: 3x + 3y = 3, 2x + 2y = 2, x + y = 1. Example with no solution: 3 x + 3 y + 3 z = 3, 2 x + 2 y + 2 z = 2, x + y + z = 1, x + y + z = 4. These results may be easier to understand by putting the augmented matrix of the coefficients of the system in row echelon form by using Gaussian elimination .