Search results
Results from the WOW.Com Content Network
Go's foreach loop can be used to loop over an array, slice, string, map, or channel. Using the two-value form gets the index/key (first element) and the value (second element): for index , value := range someCollection { // Do something to index and value }
For-loops are typically used when the number of iterations is known before entering the loop. For-loops can be thought of as shorthands for while-loops which increment and test a loop variable. Various keywords are used to indicate the usage of a for loop: descendants of ALGOL use " for ", while descendants of Fortran use " do ".
Like raw strings, there can be any number of equals signs between the square brackets, provided both the opening and closing tags have a matching number of equals signs; this allows nesting as long as nested block comments/raw strings use a different number of equals signs than their enclosing comment: --[[comment --[=[ nested comment ...
COBOL uses the STRING statement to concatenate string variables. MATLAB and Octave use the syntax "[x y]" to concatenate x and y. Visual Basic and Visual Basic .NET can also use the "+" sign but at the risk of ambiguity if a string representing a number and a number are together. Microsoft Excel allows both "&" and the function "=CONCATENATE(X,Y)".
Introduced in Python 2.2 as an optional feature and finalized in version 2.3, generators are Python's mechanism for lazy evaluation of a function that would otherwise return a space-prohibitive or computationally intensive list. This is an example to lazily generate the prime numbers:
For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x)
An example of a Python generator returning an iterator for the Fibonacci numbers using Python's yield statement follows: def fibonacci ( limit ): a , b = 0 , 1 for _ in range ( limit ): yield a a , b = b , a + b for number in fibonacci ( 100 ): # The generator constructs an iterator print ( number )
A conditional loop has the potential to become an infinite loop when nothing in the loop's body can affect the outcome of the loop's conditional statement. However, infinite loops can sometimes be used purposely, often with an exit from the loop built into the loop implementation for every computer language , but many share the same basic ...