enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poisson regression - Wikipedia

    en.wikipedia.org/wiki/Poisson_regression

    In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters.

  3. Zero-inflated model - Wikipedia

    en.wikipedia.org/wiki/Zero-inflated_model

    Hilbe [3] notes that "Poisson regression is traditionally conceived of as the basic count model upon which a variety of other count models are based." In a Poisson model, "… the random variable y {\displaystyle y} is the count response and parameter λ {\displaystyle \lambda } (lambda) is the mean.

  4. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling n {\displaystyle n} data points there is one independent variable: x i {\displaystyle x_{i}} , and two parameters, β ...

  5. Log-linear model - Wikipedia

    en.wikipedia.org/wiki/Log-linear_model

    in which the f i (X) are quantities that are functions of the variable X, in general a vector of values, while c and the w i stand for the model parameters. The term may specifically be used for: A log-linear plot or graph, which is a type of semi-log plot. Poisson regression for contingency tables, a type of generalized linear model.

  6. Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_distribution

    In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]

  7. Generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_model

    Generalized linear models were formulated by John Nelder and Robert Wedderburn as a way of unifying various other statistical models, including linear regression, logistic regression and Poisson regression. [1] They proposed an iteratively reweighted least squares method for maximum likelihood estimation (MLE) of the model parameters. MLE ...

  8. Data transformation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Data_transformation...

    Examples of variance-stabilizing transformations are the Fisher transformation for the sample correlation coefficient, the square root transformation or Anscombe transform for Poisson data (count data), the Box–Cox transformation for regression analysis, and the arcsine square root transformation or angular transformation for proportions ...

  9. Fixed-effect Poisson model - Wikipedia

    en.wikipedia.org/wiki/Fixed-effect_Poisson_model

    Linear panel data models use the linear additivity of the fixed effects to difference them out and circumvent the incidental parameter problem. Even though Poisson models are inherently nonlinear, the use of the linear index and the exponential link function lead to multiplicative separability, more specifically [2] E[y it ∨ x i1...