Search results
Results from the WOW.Com Content Network
Nitroethane is produced industrially by treating propane with nitric acid at 350–450 °C. This exothermic reaction produces four industrially significant nitroalkanes: nitromethane, nitroethane, 1-nitropropane, and 2-nitropropane. The reaction involves free radicals, such as CH 3 CH 2 CH 2 O., which arise via homolysis of the corresponding ...
The reaction has been the subject of several literature reviews. [1] [2] [3] The Nef reaction: 1. Salt of a nitroalkane 3. Ketone 4. Nitrous oxide. The reaction was reported in 1894 by the chemist John Ulric Nef, [4] who treated the sodium salt of nitroethane with sulfuric acid resulting in an 85–89% yield of nitrous oxide and at least 70% ...
The oxygen content of nitromethane enables it to burn with much less atmospheric oxygen than conventional fuels. [15] During nitromethane combustion, nitric oxide (NO) is one of the major emission products along with CO 2 and H 2 O. [ 16 ] Nitric oxide contributes to air pollution, acid rain, and ozone layer depletion.
The reaction produces fragments from the parent alkane, creating a diverse mixture of products; for instance, nitromethane, nitroethane, 1-nitropropane, and 2-nitropropane are produced by treating propane with nitric acid in the gas phase (e.g. 350–450 °C and 8–12 atm).
At night, NO 3 further reacts with NO 2 and establishes an equilibrium reaction with dinitrogen pentoxide (N 2 O 5). [35] Via heterogeneous reaction, N 2 O 5 reacts with water vapor or liquid water and forms nitric acid (HNO 3). As mentioned above, nitric acid can be removed through wet and dry deposition and this results in the removal of NO x ...
With the reaction involving the addition of an acidic carbon nucleophile to a carbon-heteroatom double bond, the nitro-Mannich reaction is related to some of the most fundamental carbon-carbon bond forming reactions in organic chemistry, including the aldol reaction, [2] Henry reaction (nitro-aldol reaction) [3] and Mannich reaction. [4]
The figure below illustrates one of the commonly accepted models for stereoselection without any modification to the Henry reaction. In this model, stereoselectivity is governed by the size of the R groups in the model (such as a carbon chain), as well as by a transition state that minimizes dipole by orienting the nitro group and carbonyl oxygen anti each other (on opposite sides of the ...
Air was blown through this arc, causing some of the nitrogen to react with oxygen forming nitric oxide. By carefully controlling the energy of the arc and the velocity of the air stream, yields of up to approximately 4–5% nitric oxide were obtained at 3000 °C and less at lower temperatures. [10] [11] The process is extremely energy intensive ...