Search results
Results from the WOW.Com Content Network
In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃x" or "∃(x)" or ...
In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. [1] This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" [2] or "∃ =1". For example, the formal statement
As a general rule, swapping two adjacent universal quantifiers with the same scope (or swapping two adjacent existential quantifiers with the same scope) doesn't change the meaning of the formula (see Example here), but swapping an existential quantifier and an adjacent universal quantifier may change its meaning.
Example requires a quantifier over predicates, which cannot be implemented in single-sorted first-order logic: Zj → ∃X(Xj∧Xp). Quantification over properties Santa Claus has all the attributes of a sadist. Example requires quantifiers over predicates, which cannot be implemented in single-sorted first-order logic: ∀X(∀x(Sx → Xx) → ...
A (existential second-order) formula is one additionally having some existential quantifiers over second order variables, i.e. …, where is a first-order formula. The fragment of second-order logic consisting only of existential second-order formulas is called existential second-order logic and abbreviated as ESO, as Σ 1 1 {\displaystyle ...
the universal quantifier ∀ and the existential quantifier ∃; A sequence of these symbols forms a sentence that belongs to the first-order theory of the reals if it is grammatically well formed, all its variables are properly quantified, and (when interpreted as a mathematical statement about the real numbers) it is a true statement.
The key step is to find a bound on the existential quantifier in a formula (∃x)A(x), producing a bounded existential formula (∃x<n)A(x). The bounded formula may then be written as a finite disjunction A(1)∨A(2)∨...∨A(n). Finally, disjunction elimination may be used to show that one of the disjuncts is provable.
In mathematical logic, a first-order language of the real numbers is the set of all well-formed sentences of first-order logic that involve universal and existential quantifiers and logical combinations of equalities and inequalities of expressions over real variables.