enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.

  3. Exact trigonometric values - Wikipedia

    en.wikipedia.org/wiki/Exact_trigonometric_values

    Additionally, an angle that is a rational multiple of radians is constructible if and only if, when it is expressed as / radians, where a and b are relatively prime integers, the prime factorization of the denominator, b, is the product of some power of two and any number of distinct Fermat primes (a Fermat prime is a prime number one greater ...

  4. Clearing denominators - Wikipedia

    en.wikipedia.org/wiki/Clearing_denominators

    Simplifying this further gives us the solution x = −3. It is easily checked that none of the zeros of x ( x + 1)( x + 2) – namely x = 0 , x = −1 , and x = −2 – is a solution of the final equation, so no spurious solutions were introduced.

  5. Radian - Wikipedia

    en.wikipedia.org/wiki/Radian

    One radian is defined as the angle at the center of a circle in a plane that subtends an arc whose length equals the radius of the circle. [6] More generally, the magnitude in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is, =, where θ is the magnitude in radians of the subtended angle, s is arc length, and r is radius.

  6. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    provided the angle is measured in radians. Angles measured in degrees must first be converted to radians by multiplying them by ⁠ / ⁠. These approximations have a wide range of uses in branches of physics and engineering, including mechanics, electromagnetism, optics, cartography, astronomy, and computer science.

  7. Binary angular measurement - Wikipedia

    en.wikipedia.org/wiki/Binary_angular_measurement

    Multiplying that fraction by 360° or 2π gives the angle in degrees in the range 0 to 360, or in radians, in the range 0 to 2π, respectively. For example, with n = 8, the binary integers (00000000) 2 (fraction 0.00), (01000000) 2 (0.25), (10000000) 2 (0.50), and (11000000) 2 (0.75) represent the angular measures 0°, 90°, 180°, and 270 ...

  8. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Identity 1: ⁡ + ⁡ = The following two results follow from this and the ratio identities. To obtain the first, divide both sides of ⁡ + ⁡ = by ⁡; for the second, divide by ⁡.

  9. Angle - Wikipedia

    en.wikipedia.org/wiki/Angle

    The radian is determined by the circumference of a circle that is equal in length to the radius of the circle (n = 2 π = 6.283...). It is the angle subtended by an arc of a circle that has the same length as the circle's radius. The symbol for radian is rad. One turn is 2 π radians, and one radian is ⁠ 180° / π ⁠, or