enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Persistence of a number - Wikipedia

    en.wikipedia.org/wiki/Persistence_of_a_number

    The additive persistence of 2718 is 2: first we find that 2 + 7 + 1 + 8 = 18, and then that 1 + 8 = 9. The multiplicative persistence of 39 is 3, because it takes three steps to reduce 39 to a single digit: 39 → 27 → 14 → 4. Also, 39 is the smallest number of multiplicative persistence 3.

  3. Multiset - Wikipedia

    en.wikipedia.org/wiki/Multiset

    In the multiset {a, a, b}, the element a has multiplicity 2, and b has multiplicity 1. In the multiset {a, a, a, b, b, b}, a and b both have multiplicity 3. These objects are all different when viewed as multisets, although they are the same set, since they all consist of the same elements.

  4. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    60 = 2 × 2 × 3 × 5, the multiplicity of the prime factor 2 is 2, while the multiplicity of each of the prime factors 3 and 5 is 1. Thus, 60 has four prime factors allowing for multiplicities, but only three distinct prime factors.

  5. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A square has even multiplicity for all prime factors (it is of the form a 2 for some a). The first: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 (sequence A000290 in the OEIS ). A cube has all multiplicities divisible by 3 (it is of the form a 3 for some a ).

  6. Rouché's theorem - Wikipedia

    en.wikipedia.org/wiki/Rouché's_theorem

    Rouché's theorem, named after Eugène Rouché, states that for any two complex-valued functions f and g holomorphic inside some region with closed contour , if |g(z)| < |f(z)| on , then f and f + g have the same number of zeros inside , where each zero is counted as many times as its multiplicity.

  7. p-adic valuation - Wikipedia

    en.wikipedia.org/wiki/P-adic_valuation

    In number theory, the p-adic valuation or p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n.It is denoted ().Equivalently, () is the exponent to which appears in the prime factorization of .

  8. Jacobi's four-square theorem - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_four-square_theorem

    In particular, for a prime number p we have the explicit formula r 4 (p) = 8(p + 1). [2] Some values of r 4 (n) occur infinitely often as r 4 (n) = r 4 (2 m n) whenever n is even. The values of r 4 (n) can be arbitrarily large: indeed, r 4 (n) is infinitely often larger than ⁡. [2]

  9. Zero-sum problem - Wikipedia

    en.wikipedia.org/wiki/Zero-sum_problem

    Explicitly this says that any multiset of 2n − 1 integers has a subset of size n the sum of whose elements is a multiple of n, but that the same is not true of multisets of size 2n − 2. (Indeed, the lower bound is easy to see: the multiset containing n − 1 copies of 0 and n − 1 copies of 1 contains no n-subset summing to a multiple of n.)