enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Persistence of a number - Wikipedia

    en.wikipedia.org/wiki/Persistence_of_a_number

    The additive persistence of 2718 is 2: first we find that 2 + 7 + 1 + 8 = 18, and then that 1 + 8 = 9. The multiplicative persistence of 39 is 3, because it takes three steps to reduce 39 to a single digit: 39 → 27 → 14 → 4. Also, 39 is the smallest number of multiplicative persistence 3.

  3. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    The roots of the corresponding scalar polynomial equation, λ 2 = λ, are 0 and 1. Thus any projection has 0 and 1 for its eigenvalues. The multiplicity of 0 as an eigenvalue is the nullity of P, while the multiplicity of 1 is the rank of P. Another example is a matrix A that satisfies A 2 = α 2 I for some scalar α. The eigenvalues must be ± ...

  4. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A square has even multiplicity for all prime factors (it is of the form a 2 for some a). The first: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 (sequence A000290 in the OEIS ). A cube has all multiplicities divisible by 3 (it is of the form a 3 for some a ).

  5. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    60 = 2 × 2 × 3 × 5, the multiplicity of the prime factor 2 is 2, while the multiplicity of each of the prime factors 3 and 5 is 1. Thus, 60 has four prime factors allowing for multiplicities, but only three distinct prime factors.

  6. Rouché's theorem - Wikipedia

    en.wikipedia.org/wiki/Rouché's_theorem

    Rouché's theorem, named after Eugène Rouché, states that for any two complex-valued functions f and g holomorphic inside some region with closed contour , if |g(z)| < |f(z)| on , then f and f + g have the same number of zeros inside , where each zero is counted as many times as its multiplicity.

  7. p-adic valuation - Wikipedia

    en.wikipedia.org/wiki/P-adic_valuation

    In number theory, the p-adic valuation or p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n.It is denoted ().Equivalently, () is the exponent to which appears in the prime factorization of .

  8. Zero-sum problem - Wikipedia

    en.wikipedia.org/wiki/Zero-sum_problem

    Explicitly this says that any multiset of 2n − 1 integers has a subset of size n the sum of whose elements is a multiple of n, but that the same is not true of multisets of size 2n − 2. (Indeed, the lower bound is easy to see: the multiset containing n − 1 copies of 0 and n − 1 copies of 1 contains no n-subset summing to a multiple of n.)

  9. Perron–Frobenius theorem - Wikipedia

    en.wikipedia.org/wiki/Perron–Frobenius_theorem

    Facts 1–7 can be found in Meyer [12] chapter 8 claims 8.2.11–15 page 667 and exercises 8.2.5,7,9 pages 668–669. The left and right eigenvectors w and v are sometimes normalized so that the sum of their components is equal to 1; in this case, they are sometimes called stochastic eigenvectors .