enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    The following metabolic pathways are all strongly reliant on glycolysis as a source of metabolites: and many more. Pentose phosphate pathway, which begins with the dehydrogenation of glucose-6-phosphate, the first intermediate to be produced by glycolysis, produces various pentose sugars, and NADPH for the synthesis of fatty acids and cholesterol.

  3. NADH dehydrogenase - Wikipedia

    en.wikipedia.org/wiki/NADH_dehydrogenase

    NADH dehydrogenase is an enzyme that converts nicotinamide adenine dinucleotide (NAD) from its reduced form (NADH) to its oxidized form (NAD +). Members of the NADH dehydrogenase family and analogues are commonly systematically named using the format NADH:acceptor oxidoreductase .

  4. Fumarate reductase (NADH) - Wikipedia

    en.wikipedia.org/wiki/Fumarate_reductase_(NADH)

    In enzymology, a fumarate reductase (NADH) (EC 1.3.1.6) is an enzyme that catalyzes the chemical reaction succinate + NAD + ⇌ {\displaystyle \rightleftharpoons } fumarate + NADH + H + Thus, the two substrates of this enzyme are succinate and NAD + , whereas its three products are fumarate , NADH , and H + .

  5. Nicotinamide adenine dinucleotide - Wikipedia

    en.wikipedia.org/wiki/Nicotinamide_adenine_di...

    Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an adenine nucleobase and the other, nicotinamide. NAD exists in two forms: an oxidized and reduced form, abbreviated as NAD + and NADH (H for hydrogen), respectively.

  6. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    NADH dehydrogenase → plastoquinol → b 6 f → cyt c 6 → cyt aa 3 → O 2. where the mobile electron carriers are plastoquinol and cytochrome c 6, while the proton pumps are NADH dehydrogenase, cyt b 6 f and cytochrome aa 3 (member of the COX3 family). Cyanobacteria are the only bacteria that produce oxygen during photosynthesis.

  7. Carbohydrate catabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_catabolism

    The energy from the acetyl group, in the form of electrons, is used to reduce NAD+ and FAD to NADH and FADH 2, respectively. NADH and FADH 2 contain the stored energy harnessed from the initial glucose molecule and is used in the electron transport chain where the bulk of the ATP is produced. [1]

  8. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    Glycolysis produces only 2 ATP molecules, but somewhere between 30 and 36 ATPs are produced by the oxidative phosphorylation of the 10 NADH and 2 succinate molecules made by converting one molecule of glucose to carbon dioxide and water, [6] while each cycle of beta oxidation of a fatty acid yields about 14 ATPs. These ATP yields are ...

  9. Anaerobic glycolysis - Wikipedia

    en.wikipedia.org/wiki/Anaerobic_glycolysis

    When sufficient oxygen is not present in the muscle cells for further oxidation of pyruvate and NADH produced in glycolysis, NAD+ is regenerated from NADH by reduction of pyruvate to lactate. [4] Lactate is converted to pyruvate by the enzyme lactate dehydrogenase. [3] The standard free energy change of the reaction is -25.1 kJ/mol. [6]

  1. Related searches explain how nad+ becomes nadh produced in plants and food processing because the following

    nadh dehydrogenasenadh extinction coefficient
    nicotinamide and nadh levelsnicotinamide adenine to nad