Search results
Results from the WOW.Com Content Network
The goal is then to find for some instance x an optimal solution, that is, a feasible solution y with (,) = {(, ′): ′ ()}. For each combinatorial optimization problem, there is a corresponding decision problem that asks whether there is a feasible solution for some particular measure m 0 .
Another condition in which the min-max and max-min are equal is when the Lagrangian has a saddle point: (x∗, λ∗) is a saddle point of the Lagrange function L if and only if x∗ is an optimal solution to the primal, λ∗ is an optimal solution to the dual, and the optimal values in the indicated problems are equal to each other. [18 ...
The following is the skeleton of a generic branch and bound algorithm for minimizing an arbitrary objective function f. [3] To obtain an actual algorithm from this, one requires a bounding function bound, that computes lower bounds of f on nodes of the search tree, as well as a problem-specific branching rule.
Optimal substructure means that the solution to a given optimization problem can be obtained by the combination of optimal solutions to its sub-problems. Such optimal substructures are usually described by means of recursion. For example, given a graph G=(V,E), the shortest path p from a vertex u to a vertex v exhibits optimal substructure ...
Two traditions of satisficing exist in decision-making research: Simon's program of studying how individuals or institutions rely on heuristic solutions in the real world, and the program of finding optimal solutions to problems simplified by convenient mathematical assumptions (so that optimization is possible). [9]
To obtain the optimal solution with minimum computation and time, the problem is solved iteratively where in each iteration the solution moves closer to the optimum solution. Such methods are known as ‘numerical optimization’, ‘simulation-based optimization’ [ 1 ] or 'simulation-based multi-objective optimization' used when more than ...
Such a graph does not always provide an optimal solution in 3D space. [2] An any-angle path planning algorithm aims to produce optimal or near-optimal solutions while taking less time than the basic visibility graph approach. Fast any-angle algorithms take roughly the same time as a grid-based solution to compute.
Infinite-dimensional optimization studies the case when the set of feasible solutions is a subset of an infinite-dimensional space, such as a space of functions. Heuristics and metaheuristics make few or no assumptions about the problem being optimized. Usually, heuristics do not guarantee that any optimal solution need be found.