Search results
Results from the WOW.Com Content Network
Three-phase transformer with four-wire output for 208Y/120 volt service: one wire for neutral, others for A, B and C phases. Three-phase electric power (abbreviated 3ϕ [1]) is a common type of alternating current (AC) used in electricity generation, transmission, and distribution. [2]
One voltage cycle of a three-phase system. A polyphase system (the term coined by Silvanus Thompson) is a means of distributing alternating-current (AC) electrical power that utilizes more than one AC phase, which refers to the phase offset value (in degrees) between AC in multiple conducting wires; phases may also refer to the corresponding terminals and conductors, as in color codes.
Such arrays will evenly balance the polyphase load between the phases of the source system. For example, balanced two-phase power can be obtained from a three-phase network by using two specially constructed transformers, with taps at 50% and 86.6% of the primary voltage.
An American Rotary Phase Converter with a Transformer. A phase converter is a device that converts electric power provided as single phase to multiple phase or vice versa. The majority of phase converters are used to produce three-phase electric power from a single-phase source, thus allowing the operation of three-phase equipment at a site that only has single-phase electrical service.
Where the three-phase load is small relative to the total load, two individual transformers may be used instead of the three for a full delta or a three-phase transformer, thus providing a variety of voltages at a reduced cost. This is called open-delta high-leg, and has a reduced capacity relative to a full delta. [3] [4] [5]
Download QR code; Print/export Download as PDF; Printable version; In other projects Wikimedia Commons; ... Pages in category "Three-phase AC power"
Download as PDF; Printable version; In other projects ... Three-phase AC power (1 C, 7 P) Pages in category "AC power"
Angle notation can easily describe leading and lagging current: . [1] In this equation, the value of theta is the important factor for leading and lagging current. As mentioned in the introduction above, leading or lagging current represents a time shift between the current and voltage sine curves, which is represented by the angle by which the curve is ahead or behind of where it would be ...