Search results
Results from the WOW.Com Content Network
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. [1] In particular ...
A graphical representation of a partially built propositional tableau. In proof theory, the semantic tableau [1] (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux), also called an analytic tableau, [2] truth tree, [1] or simply tree, [2] is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. [1]
It may be defined either by appending one of the two equivalent axioms (¬q → p) → (((p → q) → p) → p) or equivalently p∨(¬q)∨(p → q) to the axioms of intuitionistic logic, or by explicit truth tables for its operations. In particular, conjunction and disjunction are the same as for Kleene's and Łukasiewicz's logic, while the ...
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually {true, false}, {0,1} or {-1,1}). [1] [2] Alternative names are switching function, used especially in older computer science literature, [3] [4] and truth function (or logical function), used in logic.
while the former is a disjunction of n conjunctions of 2 variables, the latter consists of 2 n clauses of n variables. However, with use of the Tseytin transformation, we may find an equisatisfiable conjunctive normal form formula with length linear in the size of the original propositional logic formula.
This set of two values is also called the Boolean domain. Corresponding semantics of logical connectives are truth functions, whose values are expressed in the form of truth tables. Logical biconditional becomes the equality binary relation, and negation becomes a bijection which permutes true and false.
Many-valued logic (also multi-or multiple-valued logic) is a propositional calculus in which there are more than two truth values. Traditionally, in Aristotle's logical calculus, there were only two possible values (i.e., "true" and "false") for any proposition. Classical two-valued logic may be extended to n-valued logic for n greater than 2.
XORing those two bits will give a "1" if there is an overflow. XOR can be used to swap two numeric variables in computers, using the XOR swap algorithm; however this is regarded as more of a curiosity and not encouraged in practice. XOR linked lists leverage XOR properties in order to save space to represent doubly linked list data structures.