enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    The energy used by human cells in an adult requires the hydrolysis of 100 to 150 mol/L of ATP daily, which means a human will typically use their body weight worth of ATP over the course of the day. [30] Each equivalent of ATP is recycled 1000–1500 times during a single day (150 / 0.1 = 1500), [29] at approximately 9×10 20 molecules/s. [29]

  3. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    In anoxygenic photosynthesis, various electron donors are used. Cytochrome b 6 f and ATP synthase work together to produce ATP (photophosphorylation) in two distinct ways. In non-cyclic photophosphorylation, cytochrome b 6 f uses electrons from PSII and energy from PSI [citation needed] to pump protons from the stroma to the lumen. The ...

  4. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    This potential is then used to drive ATP synthase and produce ATP from ADP and a phosphate group. Biology textbooks often state that 38 ATP molecules can be made per oxidized glucose molecule during cellular respiration (2 from glycolysis, 2 from the Krebs cycle, and about 34 from the electron transport system). [5]

  5. ATP synthase - Wikipedia

    en.wikipedia.org/wiki/ATP_synthase

    The ATP synthase isolated from bovine (Bos taurus) heart mitochondria is, in terms of biochemistry and structure, the best-characterized ATP synthase. Beef heart is used as a source for the enzyme because of the high concentration of mitochondria in cardiac muscle. Their genes have close homology to human ATP synthases. [32] [33] [34]

  6. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    In photophosphorylation, light energy is used to pump protons across a biological membrane, mediated by flow of electrons through an electron transport chain. This stores energy in a proton gradient. As the protons flow back through an enzyme called ATP synthase, ATP is generated from ADP and inorganic

  7. Active transport - Wikipedia

    en.wikipedia.org/wiki/Active_transport

    There are two types of active transport: primary active transport that uses adenosine triphosphate (ATP), and secondary active transport that uses an electrochemical gradient. This process is in contrast to passive transport , which allows molecules or ions to move down their concentration gradient, from an area of high concentration to an area ...

  8. Calvin cycle - Wikipedia

    en.wikipedia.org/wiki/Calvin_cycle

    The Calvin cycle uses the chemical energy of ATP and the reducing power of NADPH from the light-dependent reactions to produce sugars for the plant to use. These substrates are used in a series of reduction-oxidation ( redox ) reactions to produce sugars in a step-wise process; there is no direct reaction that converts several molecules of CO 2 ...

  9. Magnesium in biology - Wikipedia

    en.wikipedia.org/wiki/Magnesium_in_biology

    Within individual plant cells, the Mg 2+ requirements are largely the same as for all cellular life; Mg 2+ is used to stabilise membranes, is vital to the utilisation of ATP, is extensively involved in the nucleic acid biochemistry, and is a cofactor for many enzymes (including the ribosome).