Ad
related to: laplace equation wetting angle method calculus problems practice
Search results
Results from the WOW.Com Content Network
In contrast, the equilibrium contact angle described by the Young-Laplace equation is measured from a static state. Static measurements yield values in-between the advancing and receding contact angle depending on deposition parameters (e.g. velocity, angle, and drop size) and drop history (e.g. evaporation from time of deposition).
This measured pressure permits obtaining the pore diameter, which is calculated by using the Young-Laplace formula P= 4*γ*cos θ*/D in which D is the pore size diameter, P is the pressure measured, γ is the surface tension of the wetting liquid and θ is the contact angle of the wetting liquid with the sample. The surface tension γ is a ...
The contact angle is defined as the angle formed by the intersection of the liquid-solid interface and the liquid–vapour interface. [2] The size of the angle quantifies the wettability of liquid, i.e., the interaction between the liquid and solid surface. A contact angle of = can be considered, perfect wetting.
An alternative method for measuring the contact angle is the Wilhelmy method, which employs a sensitive force meter of some sort to measure a force that can be translated into a value of the contact angle. In this method, a small plate-shaped sample of the solid in question, attached to the arm of a force meter, is vertically dipped into a pool ...
The Laplace pressure is the pressure difference between the inside and the outside of a curved surface that forms the boundary between two fluid regions. [1] The pressure difference is caused by the surface tension of the interface between liquid and gas, or between two immiscible liquids.
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
Prolate spheroidal coordinates μ and ν for a = 1.The lines of equal values of μ and ν are shown on the xz-plane, i.e. for φ = 0.The surfaces of constant μ and ν are obtained by rotation about the z-axis, so that the diagram is valid for any plane containing the z-axis: i.e. for any φ.
Figure 2: Wetting of different fluids: A shows a fluid with very little wetting, while C shows a fluid with more wetting. A has a large contact angle, and C has a small contact angle. The contact angle (θ), as seen in Figure 1, is the angle at which the liquid–vapor interface meets the solid–liquid interface. The contact angle is ...
Ad
related to: laplace equation wetting angle method calculus problems practice