Search results
Results from the WOW.Com Content Network
English: Shows recursive definitions of addition (+) and multiplication (*) on natural numbers and inductive proofs of commutativity, associativity, distributivity by Peano induction; also indicates which property is used in the proof of which other one.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem. [1] [2] Recursion solves such recursive problems by using functions that call themselves from within their own code. The approach can be applied to many types of problems, and recursion ...
These examples reduce easily to a single recursive function by inlining the forest function in the tree function, which is commonly done in practice: directly recursive functions that operate on trees sequentially process the value of the node and recurse on the children within one function, rather than dividing these into two separate functions.
Recursion in computer programming is exemplified when a function is defined in terms of simpler, often smaller versions of itself. The solution to the problem is then devised by combining the solutions obtained from the simpler versions of the problem. One example application of recursion is in parsers for programming languages. The great ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more
The set of recursive languages is a subset of both RE and co-RE. [3] In fact, it is the intersection of those two classes, because we can decide any problem for which there exists a recogniser and also a co-recogniser by simply interleaving them until one obtains a result.
Thus the halting problem is an example of a computably enumerable (c.e.) set, which is a set that can be enumerated by a Turing machine (other terms for computably enumerable include recursively enumerable and semidecidable). Equivalently, a set is c.e. if and only if it is the range of some computable function.