enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  3. Durand–Kerner method - Wikipedia

    en.wikipedia.org/wiki/Durand–Kerner_method

    In numerical analysis, the Weierstrass method or Durand–Kerner method, discovered by Karl Weierstrass in 1891 and rediscovered independently by Durand in 1960 and Kerner in 1966, is a root-finding algorithm for solving polynomial equations. [1] In other words, the method can be used to solve numerically the equation f(x) = 0,

  4. Category:Root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Root-finding...

    A root-finding algorithm is a numerical method or algorithm for finding a value x such that f(x) = 0, for a given function f. Here, x is a single real number. Root-finding algorithms are studied in numerical analysis.

  5. Ridders' method - Wikipedia

    en.wikipedia.org/wiki/Ridders'_method

    In numerical analysis, Ridders' method is a root-finding algorithm based on the false position method and the use of an exponential function to successively approximate a root of a continuous function (). The method is due to C. Ridders. [1] [2]

  6. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    If x is a simple root of the polynomial , then Laguerre's method converges cubically whenever the initial guess, , is close enough to the root . On the other hand, when x 1 {\displaystyle \ x_{1}\ } is a multiple root convergence is merely linear, with the penalty of calculating values for the polynomial and its first and second derivatives at ...

  7. ITP method - Wikipedia

    en.wikipedia.org/wiki/ITP_Method

    In numerical analysis, the ITP method (Interpolate Truncate and Project method) is the first root-finding algorithm that achieves the superlinear convergence of the secant method [1] while retaining the optimal [2] worst-case performance of the bisection method. [3]

  8. Steffensen's method - Wikipedia

    en.wikipedia.org/wiki/Steffensen's_method

    Similar to most other iterative root-finding algorithms, the crucial weakness in Steffensen's method is choosing an 'adequate' starting value . If the value of x 0 {\displaystyle ~x_{0}~} is not 'close enough' to the actual solution x ⋆ , {\displaystyle ~x_{\star }~,} the method may fail and the sequence of values x 0 , x 1 , x 2 , x 3 , …

  9. Muller's method - Wikipedia

    en.wikipedia.org/wiki/Muller's_method

    Muller's method is a root-finding algorithm, a numerical method for solving equations of the form f(x) = 0.It was first presented by David E. Muller in 1956.. Muller's method proceeds according to a third-order recurrence relation similar to the second-order recurrence relation of the secant method.