enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Recursion (computer science) - Wikipedia

    en.wikipedia.org/wiki/Recursion_(computer_science)

    A common algorithm design tactic is to divide a problem into sub-problems of the same type as the original, solve those sub-problems, and combine the results. This is often referred to as the divide-and-conquer method; when combined with a lookup table that stores the results of previously solved sub-problems (to avoid solving them repeatedly and incurring extra computation time), it can be ...

  3. Primitive recursive function - Wikipedia

    en.wikipedia.org/wiki/Primitive_recursive_function

    A total recursive function is a partial recursive function that is defined for every input. Every primitive recursive function is total recursive, but not all total recursive functions are primitive recursive. The Ackermann function A(m,n) is a well-known example of a total recursive function (in fact, provable total), that is not primitive ...

  4. Recursion - Wikipedia

    en.wikipedia.org/wiki/Recursion

    A classic example of recursion is the definition of the factorial function, given here in Python code: def factorial ( n ): if n > 0 : return n * factorial ( n - 1 ) else : return 1 The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n , until reaching the base case ...

  5. Algorithm - Wikipedia

    en.wikipedia.org/wiki/Algorithm

    Recursion A recursive algorithm invokes itself repeatedly until meeting a termination condition, and is a common functional programming method. Iterative algorithms use repetitions such as loops or data structures like stacks to solve problems. Problems may be suited for one implementation or the other.

  6. Mutual recursion - Wikipedia

    en.wikipedia.org/wiki/Mutual_recursion

    In this case the tree function calls the forest function by single recursion, but the forest function calls the tree function by multiple recursion. Using the Standard ML datatype above, the size of a tree (number of nodes) can be computed via the following mutually recursive functions: [5]

  7. Divide-and-conquer algorithm - Wikipedia

    en.wikipedia.org/wiki/Divide-and-conquer_algorithm

    This strategy avoids the overhead of recursive calls that do little or no work and may also allow the use of specialized non-recursive algorithms that, for those base cases, are more efficient than explicit recursion. A general procedure for a simple hybrid recursive algorithm is short-circuiting the base case, also known as arm's-length ...

  8. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    The dynamic programming approach to solve this problem involves breaking it apart into a sequence of smaller decisions. To do so, we define a sequence of value functions (), for =,,, …,, + which represent the value of having any amount of capital k at each time t.

  9. McCarthy 91 function - Wikipedia

    en.wikipedia.org/wiki/McCarthy_91_function

    The 91 function was chosen for being nested-recursive (contrasted with single recursion, such as defining () by means of ()). The example was popularized by Manna's book, Mathematical Theory of Computation (1974). As the field of Formal Methods advanced, this example appeared repeatedly in the research literature.