Search results
Results from the WOW.Com Content Network
The general structure of a boronic acid, where R is a substituent.. A boronic acid is an organic compound related to boric acid (B(OH) 3) in which one of the three hydroxyl groups (−OH) is replaced by an alkyl or aryl group (represented by R in the general formula R−B(OH) 2). [1]
For example, in Nicolaou's epothilones synthesis, asymmetric allylboration (with an allylborane derived from chiral alpha-pinene) is the first step in a two-carbon homologation to acetogenin: [41] Trifluoroborate salts are stabler than boronic acids and selectively alkylate aldehydes: [42]
All three have been synthesized by various routes: 1-Bromo-2-chlorobenzene: from 2-chloroaniline, via diazotization followed by a Sandmeyer reaction [1]; 1-Bromo-3-chlorobenzene: by (3-chlorophenyl)trimethylgermanium by electrophilic substitution [2] [better source needed]
Boronic acids and esters are classified depending on the type of carbon group (R) directly bonded to boron, for example alkyl-, alkenyl-, alkynyl-, and aryl-boronic esters. The most common type of starting materials that incorporate boronic esters into organic compounds for transition metal catalyzed borylation reactions have the general ...
The mechanism of organotrifluoroborate-based Suzuki-Miyaura coupling reactions has recently been investigated in detail. The organotrifluoroborate hydrolyses to the corresponding boronic acid in situ, so a boronic acid can be used in place of an organotrifluoroborate, as long as it is added slowly and carefully. [7] [8]
Basic heteroaromatic boronic acids (boronic acids that contain a basic nitrogen atom, such as 2-pyridine boronic acid) display additional protodeboronation mechanisms. [4] A key finding shows the speciation of basic heteroaromatic boronic acids to be analogous to that of simple amino acids , with zwitterionic species forming under neutral pH ...
The reaction of boron trichloride with alcohols was reported in 1931, and was used to prepare dimethoxyboron chloride, B(OCH 3) 2 Cl. [3] Egon Wiberg and Wilhelm Ruschmann used it to prepare tetrahydroxydiboron by first introducing the boron–boron bond by reduction with sodium and then hydrolysing the resulting tetramethoxydiboron, B 2 (OCH 3) 4, to produce what they termed sub-boric acid. [4]
Nucleophilic coupling (R'-Y) partners are more diverse. In the Suzuki reaction, boronic esters and boronic acids serve as nucleophilic coupling partners. [1] Expanding the scope of coupling partners is a focus methods development in organic synthesis. [2] [3]