Search results
Results from the WOW.Com Content Network
Depiction of a hydrogen atom showing the diameter as about twice the Bohr model radius. (Image not to scale) A hydrogen atom is an atom of the chemical element hydrogen.The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb force.
Deuterium, 2 H (atomic mass 2.014 101 777 844 (15) Da), the other stable hydrogen isotope, has one proton and one neutron in its nucleus, called a deuteron. 2 H comprises 26–184 ppm (by population, not mass) of hydrogen on Earth; the lower number tends to be found in hydrogen gas and higher enrichment (150 ppm) is typical of seawater.
The atomic number determines the chemical properties of the atom, and the neutron number determines the isotope or nuclide. [7]: 4 The terms isotope and nuclide are often used synonymously, but they refer to chemical and nuclear properties, respectively. [7]: 4 Isotopes are nuclides with the same atomic number, but different neutron number.
A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example, carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, whereas the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear.
Hydrogen is a chemical element; it has symbol H and atomic number 1. It is the lightest element and, at standard conditions, is a gas of diatomic molecules with the formula H 2, sometimes called dihydrogen, [11] hydrogen gas, molecular hydrogen, or simply hydrogen. It is colorless, odorless, [12] non-toxic, and highly combustible.
The neutron number (symbol N) is the number of neutrons in a nuclide. Atomic number (proton number) plus neutron number equals mass number: Z + N = A. The difference between the neutron number and the atomic number is known as the neutron excess: D = N − Z = A − 2Z. Neutron number is not written explicitly in nuclide symbol notation, but ...
The only stable nuclides having an odd number of protons and an odd number of neutrons are hydrogen-2, lithium-6, boron-10, nitrogen-14 and (observationally) tantalum-180m. This is because the mass–energy of such atoms is usually higher than that of their neighbors on the same isobaric chain, so most of them are unstable to beta decay .
Isotopes differ by number of neutrons, which directly impacts physical properties based on mass and size. Normal hydrogen (protium, 1 H) has no neutron. Deuterium (2 H) has one neutron, and tritium (3 H) has two. Neutrons add mass to the atom, leading to different chemical physical properties.