enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Citric acid cycle - Wikipedia

    en.wikipedia.org/wiki/Citric_acid_cycle

    Overview of the citric acid cycle. The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle) [1] [2] —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol.

  3. Metabolic pathway - Wikipedia

    en.wikipedia.org/wiki/Metabolic_pathway

    [10]: 571 Examples of amphibolic pathways are the citric acid cycle and the glyoxylate cycle. These sets of chemical reactions contain both energy producing and utilizing pathways. [5]: 572 To the right is an illustration of the amphibolic properties of the TCA cycle.

  4. Tricarboxylic acid - Wikipedia

    en.wikipedia.org/wiki/Tricarboxylic_acid

    The best-known example of a tricarboxylic acid is citric acid. Uses Citric acid cycle ... (TCA) cycle or Krebs cycle – which is fundamental to all aerobic organisms

  5. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    To fully oxidize the equivalent of one glucose molecule, two acetyl-CoA must be metabolized by the Krebs cycle. Two low-energy waste products, H 2 O and CO 2, are created during this cycle. [9] [10] The citric acid cycle is an 8-step process involving 18 different enzymes and co-enzymes.

  6. Anaplerotic reactions - Wikipedia

    en.wikipedia.org/wiki/Anaplerotic_reactions

    In normal function of this cycle for respiration, concentrations of TCA intermediates remain constant; however, many biosynthetic reactions also use these molecules as a substrate. Anaplerosis is the act of replenishing TCA cycle intermediates that have been extracted for biosynthesis (in what are called anaplerotic reactions).

  7. Ketone bodies - Wikipedia

    en.wikipedia.org/wiki/Ketone_bodies

    Ketone bodies are water-soluble molecules or compounds that contain the ketone groups produced from fatty acids by the liver (ketogenesis). [1] [2] Ketone bodies are readily transported into tissues outside the liver, where they are converted into acetyl-CoA (acetyl-Coenzyme A) – which then enters the citric acid cycle (Krebs cycle) and is oxidized for energy.

  8. Protein catabolism - Wikipedia

    en.wikipedia.org/wiki/Protein_catabolism

    The alpha-keto acid will then proceed into the TCA cycle, in order to produce energy. The acid can also enter glycolysis, where it will be eventually converted into pyruvate. The pyruvate is then converted into acetyl-CoA so that it can enter the TCA cycle and convert the original pyruvate molecules into ATP, or usable energy for the organism. [7]

  9. Fatty acid degradation - Wikipedia

    en.wikipedia.org/wiki/Fatty_acid_degradation

    Fatty acid degradation is the process in which fatty acids are broken down into their metabolites, in the end generating acetyl-CoA, the entry molecule for the citric acid cycle, the main energy supply of living organisms, including bacteria and animals. [1] [2] It includes three major steps: Lipolysis of and release from adipose tissue