Search results
Results from the WOW.Com Content Network
One classical thermal escape mechanism is Jeans escape, [1] named after British astronomer Sir James Jeans, who first described this process of atmospheric loss. [2] In a quantity of gas, the average velocity of any one molecule is measured by the gas's temperature, but the velocities of individual molecules change as they collide with one another, gaining and losing kinetic energy.
The atoms and molecules are so far apart that they can travel hundreds of kilometres without colliding with one another. Thus, the exosphere no longer behaves like a gas, and the particles constantly escape into space. These free-moving particles follow ballistic trajectories and may migrate in and out of the magnetosphere or the solar wind ...
The six aforementioned elements are used by organisms in a variety of ways. Hydrogen and oxygen are found in water and organic molecules, both of which are essential to life. Carbon is found in all organic molecules, whereas nitrogen is an important component of nucleic acids and proteins.
The hydrodynamic wind within the upper portion of a planet's atmosphere allows light chemical elements such as hydrogen to move up to the exobase, the lower limit of the exosphere, where the gases can then reach escape velocity, entering outer space without impacting other particles of gas.
The oxygen cycle demonstrates how free oxygen is made available in each of these regions, as well as how it is used. The oxygen cycle is the biogeochemical cycle of oxygen atoms between different oxidation states in ions, oxides, and molecules through redox reactions within and between the spheres/reservoirs of the planet Earth. [1]
Oxygen (chemical symbol O) has three naturally occurring isotopes: 16 O, 17 O, and 18 O, where the 16, 17 and 18 refer to the atomic mass.The most abundant is 16 O, with a small percentage of 18 O and an even smaller percentage of 17 O. Oxygen isotope analysis considers only the ratio of 18 O to 16 O present in a sample.
Together with hydrogen (H 2), oxygen is evolved by the electrolysis of water. The point of water electrolysis is to store energy in the form of hydrogen gas, a clean-burning fuel. The "oxygen evolution reaction (OER) is the major bottleneck [to water electrolysis] due to the sluggish kinetics of this four-electron transfer reaction."
Oxygen gas is the second most common component of the Earth's atmosphere, taking up 20.8% of its volume and 23.1% of its mass (some 10 15 tonnes). [19] [70] [d] Earth is unusual among the planets of the Solar System in having such a high concentration of oxygen gas in its atmosphere: Mars (with 0.1% O 2 by volume) and Venus have much less. The O