Search results
Results from the WOW.Com Content Network
In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many primary ideals (which are related to, but not quite the same as, powers of prime ideals).
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
A decomposition with local endomorphism rings [5] (cf. #Azumaya's theorem): a direct sum of modules whose endomorphism rings are local rings (a ring is local if for each element x, either x or 1 − x is a unit). Serial decomposition: a direct sum of uniserial modules (a module is uniserial if the lattice of submodules is a finite chain [6]).
In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number.
In mathematics, a polynomial decomposition expresses a polynomial f as the functional composition of polynomials g and h, where g and h have degree greater than 1; it is an algebraic functional decomposition. Algorithms are known for decomposing univariate polynomials in polynomial time.
Permutation decomposition, decomposition of a permutation into disjoint cycles; Primary decomposition, decomposition of ideals into primary ideals; Vector decomposition, decomposition of vectors into components or coordinates of basis vectors; Wavelet decomposition, re-expressing a given function as the sum of a series of wavelet functions
Decomposition: This is a version of Schur decomposition where and only contain real numbers. One can always write A = V S V T {\displaystyle A=VSV^{\mathsf {T}}} where V is a real orthogonal matrix , V T {\displaystyle V^{\mathsf {T}}} is the transpose of V , and S is a block upper triangular matrix called the real Schur form .
The JSJ decomposition and Thurston's hyperbolization theorem reduces the study of knots in the 3-sphere to the study of various geometric manifolds via splicing or satellite operations. In the pictured knot, the JSJ-decomposition splits the complement into the union of three manifolds: two trefoil complements and the complement of the Borromean ...