Search results
Results from the WOW.Com Content Network
X-linked recessive inheritance. X-linked recessive inheritance is a mode of inheritance in which a mutation in a gene on the X chromosome causes the phenotype to be always expressed in males (who are necessarily hemizygous for the gene mutation because they have one X and one Y chromosome) and in females who are homozygous for the gene mutation (see zygosity).
X-linked dominant traits do not necessarily affect males more than females (unlike X-linked recessive traits). The exact pattern of inheritance varies, depending on whether the father or the mother has the trait of interest. All fathers that are affected by an X-linked dominant disorder will have affected daughters but not affected sons.
In X-linked recessive disorders, only females can be the carriers of the recessive mutation, making them obligate carriers of this type of disease. Females acquire one X-chromosome from their father and one from their mother, and this means they can either be heterozygous for the mutated allele or homozygous. If heterozygous, she is a carrier ...
Dent's disease (or Dent disease) is a rare X-linked recessive inherited condition that affects the proximal renal tubules [1] of the kidney.It is one cause of Fanconi syndrome, and is characterized by tubular proteinuria, excess calcium in the urine, formation of calcium kidney stones, nephrocalcinosis, and chronic kidney failure.
Different genetic defects cause HIgM syndrome, the vast majority are inherited as an X-linked recessive genetic trait and most with the condition are male. [7] IgM is the form of antibody that all B cells produce initially before they undergo class switching due to exposure to a recognized antigen.
They are generally inherited in an autosomal recessive fashion, but notably Fabry disease is X-linked recessive. Taken together, sphingolipidoses have an incidence of approximately 1 in 10,000, but substantially more in certain populations such as Ashkenazi Jews.
In X-linked recessive inheritance, a son born to a carrier mother and an unaffected father has a 50% chance of being affected, while a daughter has a 50% chance of being a carrier, however a fraction of carriers may display a milder (or even full) form of the condition due to a phenomenon known as skewed X-inactivation, in which the normal process of inactivating half of the female body's X ...
That imprinting might be a feature of mammalian development was suggested in breeding experiments in mice carrying reciprocal chromosomal translocations. [19] Nucleus transplantation experiments in mouse zygotes in the early 1980s confirmed that normal development requires the contribution of both the maternal and paternal genomes.