enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Horizon - Wikipedia

    en.wikipedia.org/wiki/Horizon

    For example, for an observer B with a height of h B =1.70 m standing on the ground, the horizon is D B =4.65 km away. For a tower with a height of h L =100 m, the horizon distance is D L =35.7 km. Thus an observer on a beach can see the top of the tower as long as it is not more than D BL =40.35 km away.

  3. Visibility - Wikipedia

    en.wikipedia.org/wiki/Visibility

    The height of the elevated point plus the Earth radius form its hypotenuse. If both the eyes and the object are raised above the reference plane, there are two right-angled triangles. If both the eyes and the object are raised above the reference plane, there are two right-angled triangles.

  4. Radar horizon - Wikipedia

    en.wikipedia.org/wiki/Radar_horizon

    This reduces the shadow zone, but causes errors in distance and height measuring. In practice, to find , one must be using a value of 8.5·10 3 km for the effective Earth's radius (4/3 of it), instead of the real one. [2] So the equation becomes:

  5. Line-of-sight propagation - Wikipedia

    en.wikipedia.org/wiki/Line-of-sight_propagation

    If the height h is given in feet, and the distance d in statute miles, d ≈ 1.23 ⋅ h {\displaystyle d\approx 1.23\cdot {\sqrt {h}}} R is the radius of the Earth, h is the height of the ground station, H is the height of the air station d is the line of sight distance

  6. Stadiametric rangefinding - Wikipedia

    en.wikipedia.org/wiki/Stadiametric_rangefinding

    Range (r) = approximate height of object (h) × (1000 ÷ aperture in milliradians (a)) r = h(1000/a) → where r and h are identical units, and a is in milliradians. r = h/a → where r and h are identical units, and a is in radians. The above formula functions for any system of linear measure provided r and h are calculated with the same units.

  7. Comoving and proper distances - Wikipedia

    en.wikipedia.org/wiki/Comoving_and_proper_distances

    The comoving distance from an observer to a distant object (e.g. galaxy) can be computed by the following formula (derived using the Friedmann–Lemaître–Robertson–Walker metric): = ′ (′) where a(t′) is the scale factor, t e is the time of emission of the photons detected by the observer, t is the present time, and c is the speed of ...

  8. Intercept method - Wikipedia

    en.wikipedia.org/wiki/Intercept_method

    On the chart he marks the assumed position AP and draws a line in the direction of the azimuth Zn. He then measures the intercept distance along this azimuth line, towards the body if Ho>Hc and away from it if Ho<Hc. At this new point he draws a perpendicular to the azimuth line and that is the line of position LOP at the moment of the observation.

  9. Equation of time - Wikipedia

    en.wikipedia.org/wiki/Equation_of_time

    The equation of time is the east or west component of the analemma, a curve representing the angular offset of the Sun from its mean position on the celestial sphere as viewed from Earth. The equation of time values for each day of the year, compiled by astronomical observatories, were widely listed in almanacs and ephemerides. [2] [3]: 14