Search results
Results from the WOW.Com Content Network
Capillary action of water (polar) compared to mercury (non-polar), in each case with respect to a polar surface such as glass (≡Si–OH). Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of external forces like gravity.
The equation is derived for capillary flow in a cylindrical tube in the absence of a gravitational field, but is sufficiently accurate in many cases when the capillary force is still significantly greater than the gravitational force. In his paper from 1921 Washburn applies Poiseuille's Law for fluid motion in a circular tube.
Jurin's law, or capillary rise, is the simplest analysis of capillary action—the induced motion of liquids in small channels [1] —and states that the maximum height of a liquid in a capillary tube is inversely proportional to the tube's diameter.
Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and matrix effects such as capillary action (which is caused by surface tension).
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
An interesting phenomena, capillary rise of water (as pictured to the right) provides a good example of how these properties come together to drive flow through a capillary tube and how these properties are measured in a system. There are two general equations that describe the force up and force down relationship of two fluids in equilibrium.
The Bosanquet equation is a differential equation that is second-order in the time derivative, similar to Newton's Second Law, and therefore takes into account the fluid inertia. Equations of motion, like the Washburn's equation, that attempt to explain a velocity (instead of acceleration) as proportional to a driving force are often described ...
This equation was converted into a set of three ordinary differential equations (ODEs) [5] using the method of lines [8] to convert the partial derivatives on the right-hand side of the equation into appropriate finite difference forms. These three ODEs represent the dynamics of infiltrating water, falling slugs, and capillary groundwater ...