Search results
Results from the WOW.Com Content Network
Cyanogen is the chemical compound with the formula (C N) 2. The simplest stable carbon nitride, it is a colorless and highly toxic gas with a pungent odor. The molecule is a pseudohalogen. Cyanogen molecules consist of two CN groups ‒ analogous to diatomic halogen molecules, such as Cl 2, but far less oxidizing.
In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...
Cyanogen fluoride (FCN) is a toxic, colorless gas. [3] The linear molecule has a molecular mass of 45.015 gmol −1. [3] [5] Cyanogen fluoride has a boiling point of –46.2 °C and a melting point of –82 °C.
In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]
Hess's law states that the sum of the energy changes of all thermochemical equations included in an overall reaction is equal to the overall energy change. Since Δ H {\displaystyle \Delta H} is a state function and is not dependent on how reactants become products as a result, steps (in the form of several thermochemical equations) can be used ...
A related term is the heat of combustion, which is the chemical energy released due to a combustion reaction and of interest in the study of fuels. Food is similar to hydrocarbon and carbohydrate fuels, and when it is oxidized, its energy release is similar (though assessed differently than for a hydrocarbon fuel — see food energy). In ...
In the Arrhenius model of reaction rates, activation energy is the minimum amount of energy that must be available to reactants for a chemical reaction to occur. [1] The activation energy ( E a ) of a reaction is measured in kilojoules per mole (kJ/mol) or kilocalories per mole (kcal/mol). [ 2 ]
The free energy change, dG r, can be expressed as a weighted sum of change in amount times the chemical potential, the partial molar free energy of the species. The chemical potential, μ i, of the ith species in a chemical reaction is the partial derivative of the free energy with respect to the number of moles of that species, N i