Search results
Results from the WOW.Com Content Network
Convection, especially Rayleigh–Bénard convection, where the convecting fluid is contained by two rigid horizontal plates, is a convenient example of a pattern-forming system. When heat is fed into the system from one direction (usually below), at small values it merely diffuses ( conducts ) from below upward, without causing fluid flow.
Convection is caused by yeast releasing CO2. In fluid dynamics, a convection cell is the phenomenon that occurs when density differences exist within a body of liquid or gas. These density differences result in rising and/or falling convection currents, which are the key characteristics of a convection cell. When a volume of fluid is heated, it ...
Forced convection: when a fluid is forced to flow over the surface by an internal source such as fans, by stirring, and pumps, creating an artificially induced convection current. [ 3 ] In many real-life applications (e.g. heat losses at solar central receivers or cooling of photovoltaic panels), natural and forced convection occur at the same ...
On Earth, the Rayleigh number for convection within Earth's mantle is estimated to be of order 10 7, which indicates vigorous convection. This value corresponds to whole mantle convection (i.e. convection extending from the Earth's surface to the border with the core). On a global scale, surface expression of this convection is the tectonic ...
All convective processes also move heat partly by diffusion, as well. The flow of fluid may be forced by external processes, or sometimes (in gravitational fields) by buoyancy forces caused when thermal energy expands the fluid (for example in a fire plume), thus influencing its own transfer. The latter process is often called "natural convection".
The polar cell is a simple system with strong convection drivers. Though cool and dry relative to equatorial air, the air masses at the 60th parallel are still sufficiently warm and moist to undergo convection and drive a thermal loop. At the 60th parallel, the air rises to the tropopause (about 8 km at this latitude) and moves poleward.
The convection patterns are the most carefully examined example of self-organizing nonlinear systems. [4] [5] Time-dependent self-similar analytic solutions are known for the velocity fields and for the temperature distribution as well. [6] [7] Buoyancy, and hence gravity, are responsible for the
The first case is when natural convection aids forced convection. This is seen when the buoyant motion is in the same direction as the forced motion, thus accelerating the boundary layer and enhancing the heat transfer. [5] Transition to turbulence, however, can be delayed. [6] An example of this would be a fan blowing upward on a hot plate.