Search results
Results from the WOW.Com Content Network
The viscosity index (VI) is an arbitrary, unit-less measure of a fluid's change in viscosity relative to temperature change. It is mostly used to characterize the viscosity-temperature behavior of lubricating oils. The lower the VI, the more the viscosity is affected by changes in temperature.
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The proportionality factor is the dynamic viscosity of the fluid, often simply referred to as the viscosity. It is denoted by the Greek letter mu ( μ ). The dynamic viscosity has the dimensions ( m a s s / l e n g t h ) / t i m e {\displaystyle \mathrm {(mass/length)/time} } , therefore resulting in the SI units and the derived units :
The poise (symbol P; / p ɔɪ z, p w ɑː z /) is the unit of dynamic viscosity (absolute viscosity) in the centimetre–gram–second system of units (CGS). [1] It is named after Jean Léonard Marie Poiseuille (see Hagen–Poiseuille equation). The centipoise (1 cP = 0.01 P) is more commonly used than the poise itself.
The longer it takes, the higher the viscosity and thus the higher the SAE code. Larger numbers are thicker. J300 specifies a viscosity range for each non-winter grade, with higher grade numbers corresponding to higher viscosities. In addition, a minimum viscosity measured at a high temperature and high-shear rate (HTHS, ASTM D4683) is also ...
In physics and chemistry, a non-Newtonian fluid is a fluid that does not follow Newton's law of viscosity, that is, it has variable viscosity dependent on stress. In particular, the viscosity of non-Newtonian fluids can change when subjected to force. Ketchup, for example, becomes runnier when shaken and is thus a non-Newtonian fluid.
However the effective viscosity can be determined from following simple formula. [4] μ = ρ (t - 25) where μ = effective viscosity in centipoise ρ = density in g/cm 3 t = quart funnel time in seconds For example, a mud of funnel time 40 seconds and density 1.1 g/cm 3 has an effective viscosity of about 16.5