Search results
Results from the WOW.Com Content Network
The order of a group G is denoted by ord(G) or | G |, and the order of an element a is denoted by ord(a) or | a |, instead of ( ), where the brackets denote the generated group. Lagrange's theorem states that for any subgroup H of a finite group G , the order of the subgroup divides the order of the group; that is, | H | is a divisor of | G | .
order of a group The order of a group (G, •) is the cardinality (i.e. number of elements) of G. A group with finite order is called a finite group. order of a group element The order of an element g of a group G is the smallest positive integer n such that g n = e. If no such integer exists, then the order of g is said to be infinite.
Kin selection theory treats the narrower but simpler case of the benefits to close genetic relatives (or what biologists call 'kin') who may also carry and propagate the trait. A significant group of biologists support inclusive fitness as the explanation for social behavior in a wide range of species, as supported by experimental data.
Group theory has three main historical sources: number theory, the theory of algebraic equations, and geometry.The number-theoretic strand was begun by Leonhard Euler, and developed by Gauss's work on modular arithmetic and additive and multiplicative groups related to quadratic fields.
Cauchy's theorem is generalized by Sylow's first theorem, which implies that if p n is the maximal power of p dividing the order of G, then G has a subgroup of order p n (and using the fact that a p-group is solvable, one can show that G has subgroups of order p r for any r less than or equal to n).
After all, language is an invention of group dynamics that was developed to facilitate socialization and the exchange of information and to synchronize group activity. This social function of language therefore creates a sociability bias in verbal descriptors of human behavior: there are more words related to social than physical or even mental ...
Burnside's p a q b theorem states that if the order of a group is the product of one or two prime powers, then it is solvable, and so the group is not simple, or is of prime order and is cyclic. This rules out every group up to order 30 (= 2 · 3 · 5). If G is simple, and |G| = 30, then n 3 must divide 10 ( = 2 · 5), and n 3 must equal 1 (mod 3).
In detail, the space of homomorphisms from G to the (cyclic) group of order p, (, /), is a vector space over the finite field = /. A non-trivial such map has as kernel a normal subgroup of index p, and multiplying the map by an element of ( Z / p ) × {\displaystyle (\mathbf {Z} /p)^{\times }} (a non-zero number mod p ) does not change the ...