Search results
Results from the WOW.Com Content Network
The trade-off between the compaction of a function and its Fourier transform can be formalized in the form of an uncertainty principle by viewing a function and its Fourier transform as conjugate variables with respect to the symplectic form on the time–frequency domain: from the point of view of the linear canonical transformation, the ...
The appropriate choice of scaling to achieve unitarity is /, so that the energy in the physical domain will be the same as the energy in the Fourier domain, i.e., to satisfy Parseval's theorem. (Other, non-unitary, scalings, are also commonly used for computational convenience; e.g., the convolution theorem takes on a slightly simpler form with ...
The field of digital signal processing relies heavily on operations in the frequency domain (i.e. on the Fourier transform). For example, several lossy image and sound compression methods employ the discrete Fourier transform: the signal is cut into short segments, each is transformed, and then the Fourier coefficients of high frequencies ...
The dual graph depends on how the primal graph is embedded: different planar embeddings of a single graph may lead to different dual graphs. Matroid duality is an algebraic extension of planar graph duality, in the sense that the dual matroid of the graphic matroid of a planar graph is isomorphic to the graphic matroid of the dual graph.
In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of discrete values. The DTFT is often used to analyze samples of a continuous function. The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time.
Conjugate variables are pairs of variables mathematically defined in such a way that they become Fourier transform duals, [1] [2] or more generally are related through Pontryagin duality. The duality relations lead naturally to an uncertainty relation—in physics called the Heisenberg uncertainty principle—between them.
The Fourier transform can therefore be seen to relate the coefficients and the values of a polynomial: the coefficients are in the time-domain, and the values are in the frequency domain. Here, of course, it is important that the polynomial is evaluated at the n th roots of unity, which are exactly the powers of α {\displaystyle \alpha } .
Fourier transforms are not limited to functions of time, and temporal frequencies. They can equally be applied to analyze spatial frequencies, and indeed for nearly any function domain. This justifies their use in such diverse branches as image processing, heat conduction, and automatic control.