Search results
Results from the WOW.Com Content Network
Indirect propagation: Radio waves can reach points beyond the line-of-sight by diffraction and reflection. [13] Diffraction causes radio waves to bend around obstructions such as a building edge, a vehicle, or a turn in a hall. Radio waves also partially reflect from surfaces such as walls, floors, ceilings, vehicles and the ground.
Microwave lenses can be classified into two types by the propagation speed of the radio waves in the lens material: [2] Delay lens (slow wave lens): in this type the radio waves travel slower in the lens medium than in free space; the index of refraction is greater than one, so the path length is increased by passing through the lens medium.
Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another in vacuum, or into various parts of the atmosphere. [1]: 26‑1 As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. [2]
Multipath interference is a phenomenon in the physics of waves whereby a wave from a source travels to a detector via two or more paths and the two (or more) components of the wave interfere constructively or destructively. Multipath interference is a common cause of "ghosting" in analog television broadcasts and of fading of radio waves.
The received signal having two components, the LOS component and the reflection component formed predominantly by a single ground reflected wave. The 2-ray ground reflection model is a simplified propagation model used to estimate the path loss between a transmitter and a receiver in wireless communication systems, in order to estimate the ...
In 1925, observations during a solar eclipse in New York by Dr. Alfred N. Goldsmith and his team demonstrated the influence of sunlight on radio wave propagation, revealing that short waves became weak or inaudible while long waves steadied during the eclipse, thus contributing to the understanding of the ionosphere's role in radio transmission.
Ionosphere absorption is of critical importance when radio networks, telecommunication systems or interlinked radio systems are being planned, particularly when trying to determine propagation conditions. [1] The ionosphere can be described as an area of the atmosphere in which radio waves on shortwave bands are
In radio-frequency engineering and communications engineering, a waveguide is a hollow metal pipe used to carry radio waves. [1] This type of waveguide is used as a transmission line mostly at microwave frequencies, for such purposes as connecting microwave transmitters and receivers to their antennas, in equipment such as microwave ovens, radar sets, satellite communications, and microwave ...