Ads
related to: solenoid coil design calculations for electrical
Search results
Results from the WOW.Com Content Network
A solenoid (/ ˈ s oʊ l ə n ɔɪ d / [1]) is a type of electromagnet formed by a helical coil of wire whose length is substantially greater than its diameter, [2] which generates a controlled magnetic field. The coil can produce a uniform magnetic field in a volume of space when an electric current is passed through it.
In engineering, a solenoid is a device that converts electrical energy to mechanical energy, using an electromagnet formed from a coil of wire. The device creates a magnetic field [ 1 ] from electric current , and uses the magnetic field to create linear motion.
A solenoid is a long, thin coil; i.e., a coil whose length is much greater than its diameter. Under these conditions, and without any magnetic material used, the magnetic flux density B {\displaystyle B} within the coil is practically constant and is given by B = μ 0 N i ℓ {\displaystyle B={\frac {\mu _{0}\,N\,i}{\ell }}}
The design or interpretation of the required space of an orthocyclic winding is usually realized by applying an iterative approach. At first, the specified parameters of the required number of windings, the required wire cross section and the maximum space available for an insulated coil are used for the calculation basis.
An electromagnetic coil is an electrical conductor such as a wire in the shape of a coil (spiral or helix). [ 1 ] [ 2 ] Electromagnetic coils are used in electrical engineering , in applications where electric currents interact with magnetic fields , in devices such as electric motors , generators , inductors , electromagnets , transformers ...
In general, a toroidal inductor/transformer is more compact than other shaped cores because they are made of fewer materials and include a centering washer, nuts, and bolts resulting in up to a 50% lighter weight design. [1] This is especially the case for power devices.
A solenoid The longitudinal cross section of a solenoid with a constant electrical current running through it. The magnetic field lines are indicated, with their direction shown by arrows. The magnetic flux corresponds to the 'density of field lines'. The magnetic flux is thus densest in the middle of the solenoid, and weakest outside of it.
The combined costs of conductors, structure and refrigerator for toroidal coils are dominated by the cost of the superconductor. The same trend is true for solenoid coils. HTSC coils cost more than LTSC coils by a factor of 2 to 4. HTSC was expected to be cheaper due to lower refrigeration requirements but this is not the case.
Ads
related to: solenoid coil design calculations for electrical