Ad
related to: how to calculate surge current in circuit tester electric charge
Search results
Results from the WOW.Com Content Network
Inrush current, input surge current, or switch-on surge is the maximal instantaneous input current drawn by an electrical device when first turned on. Alternating-current electric motors and transformers may draw several times their normal full-load current when first energized, for a few cycles of the input waveform.
The surge is defined by the Combination Wave Generator's open-circuit voltage and short-circuit current waveforms, characterized by front time, duration, and peak values. With an open circuit output, the surge voltage is a double exponential pulse in the form of k ( e − α t − e − β t ) {\displaystyle k(e^{-\alpha t}-e^{-\beta t})} .
Ripple (specifically ripple current or surge current) may also refer to the pulsed current consumption of non-linear devices like capacitor-input rectifiers. As well as these time-varying phenomena, there is a frequency domain ripple that arises in some classes of filter and other signal processing networks.
Pre-charge of the powerline voltages in a high voltage DC application is a preliminary mode which limits the inrush current during the power up procedure. A high-voltage system with a large capacitive load can be exposed to high electric current during initial turn-on.
A different form of short-circuit testing is done to assess the mechanical strength of the transformer windings, and their ability to withstand the high forces produced if an energized transformer experiences a short-circuit fault. Currents during such events can be several times the normal rated current.
An impulse generator is an electrical apparatus which produces very short high-voltage or high-current surges. Such devices can be classified into two types: impulse voltage generators and impulse current generators. High impulse voltages are used to test the strength of electric power equipment against lightning and switching surges.
When the circuit is closed, the thermistor's resistance limits the initial current. After some time, current flow heats the thermistor, and its resistance changes to a lower value, allowing current to flow uninterrupted. It is inherently impossible for 100% of supply voltage to appear on the protected circuit, as the thermistor must continue ...
A surge of energy on a finite transmission line will see an impedance of prior to any reflections returning; hence surge impedance is an alternative name for characteristic impedance. Although an infinite line is assumed, since all quantities are per unit length, the “per length” parts of all the units cancel, and the characteristic ...
Ad
related to: how to calculate surge current in circuit tester electric charge