Search results
Results from the WOW.Com Content Network
In number theory, a prime triplet is a set of three prime numbers in which the smallest and largest of the three differ by 6. In particular, the sets must have the form (p, p + 2, p + 6) or (p, p + 4, p + 6). [1]
[3] Turing machines consist of an infinite tape, and a finite set of states which serve as the program's "source code". Producing the most output is defined as writing the largest number of 1s on the tape, also referred to as achieving the highest score, and running for the longest time is defined as taking the longest number of steps to halt. [4]
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
One punched card usually represented one line of code. It was one discrete object that was easily counted. It was the visible output of the programmer, so it made sense to managers to count lines of code as a measurement of a programmer's productivity, even referring to such as "card images". Today, the most commonly used computer languages ...
Numbers p and q like this can be computed with the extended Euclidean algorithm. gcd(a, 0) = | a |, for a ≠ 0, since any number is a divisor of 0, and the greatest divisor of a is | a |. [2] [5] This is usually used as the base case in the Euclidean algorithm. If a divides the product b⋅c, and gcd(a, b) = d, then a/d divides c.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Euler ascertained that 2 31 − 1 = 2147483647 is a prime number; and this is the greatest at present known to be such, and, consequently, the last of the above perfect numbers [i.e., 2 30 (2 31 − 1)], which depends upon this, is the greatest perfect number known at present, and probably the greatest that ever will be discovered; for as they ...
A prime divides if and only if p is congruent to ±1 modulo 5, and p divides + if and only if it is congruent to ±2 modulo 5. (For p = 5, F 5 = 5 so 5 divides F 5) . Fibonacci numbers that have a prime index p do not share any common divisors greater than 1 with the preceding Fibonacci numbers, due to the identity: [6]