Search results
Results from the WOW.Com Content Network
Palmitoyl-CoA hydrolase (EC 3.1.2.2) is an enzyme in the family of hydrolases that specifically acts on thioester bonds. It catalyzes the hydrolysis of long chain fatty acyl thioesters of acyl carrier protein or coenzyme A to form free fatty acid and the corresponding thiol: palmitoyl-CoA + H 2 O = CoA + palmitate
Palmitoyl-CoA is an acyl-CoA thioester. It is an "activated" form of palmitic acid and can be transported into the mitochondrial matrix by the carnitine shuttle system (which transports fatty acyl-CoA molecules into the mitochondria ), and once inside can participate in beta-oxidation .
Fatty acyl-CoA esters are fatty acid derivatives formed of one fatty acid, a 3'-phospho-AMP linked to phosphorylated pantothenic acid (vitamin B 5) and cysteamine. Long-chain acyl-CoA esters are substrates for a number of important enzymatic reactions and play a central role in the regulation of metabolism as allosteric regulators of several ...
The cytosolic acetyl-CoA can also condense with acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA which is the rate-limiting step controlling the synthesis of cholesterol. [16] Cholesterol can be used as is, as a structural component of cellular membranes, or it can be used to synthesize steroid hormones, bile salts, and vitamin D.
Acyl-CoA is important because this enzyme helps make Acyl-CoA from free fatty acids, and this activates the fatty acid to be metabolized. This compromised fatty acid oxidation leads to many different symptoms, including severe symptoms such as cardiomyopathy and liver disease and mild symptoms such as episodic metabolic decomposition, muscle ...
The protein encoded by the ACOT4 gene is part of a family of Acyl-CoA thioesterases, which catalyze the hydrolysis of various Coenzyme A esters of various molecules to the free acid plus CoA. These enzymes have also been referred to in the literature as acyl-CoA hydrolases, acyl-CoA thioester hydrolases, and palmitoyl-CoA hydrolases.
Thioesters are common intermediates in many biosynthetic reactions, including the formation and degradation of fatty acids and mevalonate, precursor to steroids. Examples include malonyl-CoA , acetoacetyl-CoA , propionyl-CoA , cinnamoyl-CoA , and acyl carrier protein (ACP) thioesters.
An additional class of acyl-CoA dehydrogenase was discovered that catalyzes α,β-unsaturation reactions with steroid-CoA thioesters in certain types of bacteria. [ 8 ] [ 9 ] This class of ACAD was demonstrated to form α 2 β 2 heterotetramers, rather than the usual α 4 homotetramer, a protein architecture that evolved in order to accommodate ...