Search results
Results from the WOW.Com Content Network
Instead of using impedances, the current divider rule can be applied just like the voltage divider rule if admittance (the inverse of impedance) is used: =. Take care to note that Y T is a straightforward addition, not the sum of the inverses inverted (as would be done for a standard parallel resistive network).
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
The divider output (V out) appears on the connector adjacent to the cable. A voltage divider can be used to scale down a very high voltage so that it can be measured by a volt meter. The high voltage is applied across the divider, and the divider output—which outputs a lower voltage that is within the meter's input range—is measured by the ...
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code
For a given tree in a graph, the complementary set of branches (i.e., the branches not in the tree) form a tree in the dual graph. The set of current loop equations associated with the tie sets of the original graph and tree is identical to the set of voltage node-pair equations associated with the cut sets of the dual graph. [40]
In direct-current circuit theory, Norton's theorem, also called the Mayer–Norton theorem, is a simplification that can be applied to networks made of linear time-invariant resistances, voltage sources, and current sources. At a pair of terminals of the network, it can be replaced by a current source and a single resistor in parallel.
Illustration of the "reference directions" of the current (), voltage (), and power () variables used in the passive sign convention.If positive current is defined as flowing into the device terminal which is defined to be positive voltage, then positive power (big arrow) given by the equation = represents electric power flowing into the device, and negative power represents power flowing out.
Source transformations are easy to compute using Ohm's law.If there is a voltage source in series with an impedance, it is possible to find the value of the equivalent current source in parallel with the impedance by dividing the value of the voltage source by the value of the impedance.