enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplicative function - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_function

    In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and = () whenever a and b are coprime.. An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a)f(b) holds for all positive integers a and b, even when they are not coprime.

  3. Completely multiplicative function - Wikipedia

    en.wikipedia.org/wiki/Completely_multiplicative...

    In number theory, functions of positive integers which respect products are important and are called completely multiplicative functions or totally multiplicative functions. A weaker condition is also important, respecting only products of coprime numbers, and such functions are called multiplicative functions. Outside of number theory, the ...

  4. Multiplicative number theory - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_number_theory

    The large sieve and exponential sums are usually considered part of multiplicative number theory. The distribution of prime numbers is closely tied to the behavior of the Riemann zeta function and the Riemann hypothesis, and these subjects are studied both from a number theory viewpoint and a complex analysis viewpoint.

  5. Dirichlet convolution - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_convolution

    The Dirichlet convolution of two multiplicative functions is again multiplicative, and every not constantly zero multiplicative function has a Dirichlet inverse which is also multiplicative. In other words, multiplicative functions form a subgroup of the group of invertible elements of the Dirichlet ring.

  6. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    Euler's totient function is a multiplicative function, meaning that if two numbers m and n are relatively prime, then φ(mn) = φ(m)φ(n). [4] [5] This function gives the order of the multiplicative group of integers modulo n (the group of units of the ring /). [6]

  7. Bell series - Wikipedia

    en.wikipedia.org/wiki/Bell_series

    The following is a table of the Bell series of well-known arithmetic functions. The Möbius function has () =.; The Mobius function squared has () = +.; Euler's totient has () =.; The multiplicative identity of the Dirichlet convolution has () =

  8. Möbius function - Wikipedia

    en.wikipedia.org/wiki/Möbius_function

    The Möbius function () is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated Moebius) in 1832. [i] [ii] [2] It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula.

  9. Unitary divisor - Wikipedia

    en.wikipedia.org/wiki/Unitary_divisor

    This concept originates from D. Suryanarayana (1972). [The number of bi-unitary divisors of an integer, in The Theory of Arithmetic Functions, Lecture Notes in Mathematics 251: 273–282, New York, Springer–Verlag]. The number of bi-unitary divisors of n is a multiplicative function of n with average order ⁡ where [3]