Search results
Results from the WOW.Com Content Network
Euler's totient function is a multiplicative function, meaning that if two numbers m and n are relatively prime, then φ(mn) = φ(m)φ(n). [4] [5] This function gives the order of the multiplicative group of integers modulo n (the group of units of the ring /). [6]
In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...
Over a finite field with a prime number p of elements, for any integer n that is not a multiple of p, the cyclotomic polynomial factorizes into () irreducible polynomials of degree d, where () is Euler's totient function and d is the multiplicative order of p modulo n.
n is given by Euler's totient function φ (n) (sequence A000010 in the OEIS). And then, Euler's theorem says that a φ (n) ≡ 1 (mod n) for every a coprime to n; the lowest power of a that is congruent to 1 modulo n is called the multiplicative order of a modulo n.
The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Z n; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or ...
A primitive polynomial of degree m has m different roots in GF(p m), which all have order p m − 1, meaning that any of them generates the multiplicative group of the field. Over GF(p) there are exactly φ(p m − 1) primitive elements and φ(p m − 1) / m primitive polynomials, each of degree m, where φ is Euler's totient function. [1]
Integer multiplication respects the congruence classes, that is, a ≡ a' and b ≡ b' (mod n) implies ab ≡ a'b' (mod n). This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity. Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ ...
The number of primitive elements in a finite field GF(q) is φ(q − 1), where φ is Euler's totient function, which counts the number of elements less than or equal to m that are coprime to m. This can be proved by using the theorem that the multiplicative group of a finite field GF( q ) is cyclic of order q − 1 , and the fact that a finite ...