Search results
Results from the WOW.Com Content Network
It reflects the cumulative effect of the individual half-lives, as observed by the changes in the actual serum concentration of a drug under a given dosing regimen. The complexity of biological systems means that most pharmacological substances do not have a single mechanism of elimination, and hence the observed or effective half-life does not ...
Cumulative dose is the total dose resulting from repeated exposures of ionizing radiation to an occupationally exposed worker to the same portion of the body, or to the whole body, over a period of time.
The area under the effect curve (AUEC) is an integral of the effect of a drug over time, estimated as a previously-established function of concentration. It was proposed to be used instead of AUC in animal-to-human dose translation, as computer simulation shows that it could cope better with half-life and dosing schedule variations than AUC.
Central to PK/PD models is the concentration-effect or exposure-response relationship. [4] A variety of PK/PD modeling approaches exist to describe exposure-response relationships . PK/PD relationships can be described by simple equations such as linear model, Emax model or sigmoid Emax model . [ 5 ]
For most beneficial or recreational drugs, the desired effects are found at doses slightly greater than the threshold dose. At higher doses, undesired side effects appear and grow stronger as the dose increases. The more potent a particular substance is, the steeper this curve will be.
Pharmacokinetics (from Ancient Greek pharmakon "drug" and kinetikos "moving, putting in motion"; see chemical kinetics), sometimes abbreviated as PK, is a branch of pharmacology dedicated to describing how the body affects a specific substance after administration. [1]
The plateau principle is a mathematical model or scientific law originally developed to explain the time course of drug action (pharmacokinetics). [1] The principle has wide applicability in pharmacology, physiology, nutrition, biochemistry, and system dynamics.
In pharmacology, the term ceiling effect refers to the property of increasing doses of a given medication to have progressively smaller incremental effect (an example of diminishing returns). Mixed agonist-antagonist opioids , such as nalbuphine , serve as a classic example of the ceiling effect; increasing the dose of a narcotic frequently ...