enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kernel embedding of distributions - Wikipedia

    en.wikipedia.org/wiki/Kernel_embedding_of...

    Let denote a random variable with domain and distribution .Given a symmetric, positive-definite kernel: the Moore–Aronszajn theorem asserts the existence of a unique RKHS on (a Hilbert space of functions : equipped with an inner product , and a norm ‖ ‖) for which is a reproducing kernel, i.e., in which the element (,) satisfies the reproducing property

  3. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    Keras is an open-source library that provides a Python interface for artificial neural networks. Keras was first independent software, then integrated into the TensorFlow library, and later supporting more. "Keras 3 is a full rewrite of Keras [and can be used] as a low-level cross-framework language to develop custom components such as layers ...

  4. Multivariate kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_kernel...

    The goal of density estimation is to take a finite sample of data and to make inferences about the underlying probability density function everywhere, including where no data are observed. In kernel density estimation, the contribution of each data point is smoothed out from a single point into a region of space surrounding it.

  5. Kernel regression - Wikipedia

    en.wikipedia.org/wiki/Kernel_regression

    Python: the KernelReg class for mixed data types in the statsmodels.nonparametric sub-package (includes other kernel density related classes), the package kernel_regression as an extension of scikit-learn (inefficient memory-wise, useful only for small datasets) R: the function npreg of the np package can perform kernel regression. [7] [8]

  6. Kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Kernel_density_estimation

    Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.

  7. Density estimation - Wikipedia

    en.wikipedia.org/wiki/Density_Estimation

    The density estimates are kernel density estimates using a Gaussian kernel. That is, a Gaussian density function is placed at each data point, and the sum of the density functions is computed over the range of the data. From the density of "glu" conditional on diabetes, we can obtain the probability of diabetes conditional on "glu" via Bayes ...

  8. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    If the density of ‘c’ greater than threshold density Mark cell ‘c’ as a new cluster; Calculate the density of all the neighbors of ‘c’ If the density of a neighboring cell is greater than threshold density then, add the cell in the cluster and repeat steps 4.2 and 4.3 till there is no neighbor with a density greater than threshold ...

  9. Dirichlet distribution - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_distribution

    Illustrating how the log of the density function changes when K = 3 as we change the vector α from α = (0.3, 0.3, 0.3) to (2.0, 2.0, 2.0), keeping all the individual 's equal to each other. The Dirichlet distribution of order K ≥ 2 with parameters α 1 , ..., α K > 0 has a probability density function with respect to Lebesgue measure on ...