enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    Keras is an open-source library that provides a Python interface for artificial neural networks. Keras was first independent software, then integrated into the TensorFlow library, and later supporting more. "Keras 3 is a full rewrite of Keras [and can be used] as a low-level cross-framework language to develop custom components such as layers ...

  3. Superdense coding - Wikipedia

    en.wikipedia.org/wiki/Superdense_coding

    Schematic video demonstrating individual steps of superdense coding. A message consisting of two bits (in video these are (1, 0)) is sent from station A to station B using only a single particle. This particle is a member of an entangled pair created by source S. Station A at first applies a properly chosen operation to its particle and then ...

  4. Mixed-data sampling - Wikipedia

    en.wikipedia.org/wiki/Mixed-data_sampling

    The MIDAS can also be used for machine learning time series and panel data nowcasting. [6] [7] The machine learning MIDAS regressions involve Legendre polynomials.High-dimensional mixed frequency time series regressions involve certain data structures that once taken into account should improve the performance of unrestricted estimators in small samples.

  5. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    Examples include: [17] [18] Lang and Witbrock (1988) [19] trained a fully connected feedforward network where each layer skip-connects to all subsequent layers, like the later DenseNet (2016). In this work, the residual connection was the form x ↦ F ( x ) + P ( x ) {\displaystyle x\mapsto F(x)+P(x)} , where P {\displaystyle P} is a randomly ...

  6. Extreme learning machine - Wikipedia

    en.wikipedia.org/wiki/Extreme_learning_machine

    Extreme learning machines are feedforward neural networks for classification, regression, clustering, sparse approximation, compression and feature learning with a single layer or multiple layers of hidden nodes, where the parameters of hidden nodes (not just the weights connecting inputs to hidden nodes) need to be tuned.

  7. Kernel regression - Wikipedia

    en.wikipedia.org/wiki/Kernel_regression

    Python: the KernelReg class for mixed data types in the statsmodels.nonparametric sub-package (includes other kernel density related classes), the package kernel_regression as an extension of scikit-learn (inefficient memory-wise, useful only for small datasets) R: the function npreg of the np package can perform kernel regression. [7] [8]

  8. Multivariate kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_kernel...

    The goal of density estimation is to take a finite sample of data and to make inferences about the underlying probability density function everywhere, including where no data are observed. In kernel density estimation, the contribution of each data point is smoothed out from a single point into a region of space surrounding it.

  9. Dirichlet distribution - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_distribution

    Illustrating how the log of the density function changes when K = 3 as we change the vector α from α = (0.3, 0.3, 0.3) to (2.0, 2.0, 2.0), keeping all the individual 's equal to each other. The Dirichlet distribution of order K ≥ 2 with parameters α 1 , ..., α K > 0 has a probability density function with respect to Lebesgue measure on ...