enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Iron peak - Wikipedia

    en.wikipedia.org/wiki/Iron_peak

    The iron peak is a local maximum in the vicinity of Fe (Cr, Mn, Fe, Co and Ni) on the graph of the abundances of the chemical elements. For elements lighter than iron on the periodic table, nuclear fusion releases energy. For iron, and for all of the heavier elements, nuclear fusion consumes energy.

  3. Chemical element - Wikipedia

    en.wikipedia.org/wiki/Chemical_element

    Elements heavier than iron are made in energy-absorbing processes in large stars, and their abundance in the universe (and on Earth) generally decreases with their atomic number. The abundance of the chemical elements on Earth varies from air to crust to ocean, and in various types of life. The abundance of elements in Earth's crust differs ...

  4. Iron compounds - Wikipedia

    en.wikipedia.org/wiki/Iron_compounds

    Iron shows the characteristic chemical properties of the transition metals, namely the ability to form variable oxidation states differing by steps of one and a very large coordination and organometallic chemistry: indeed, it was the discovery of an iron compound, ferrocene, that revolutionalized the latter field in the 1950s. [1]

  5. Heavy metals - Wikipedia

    en.wikipedia.org/wiki/Heavy_metals

    An average 70 kg human body is about 0.01% heavy metals (~7 g, equivalent to the weight of two dried peas, with iron at 4 g, zinc at 2.5 g, and lead at 0.12 g comprising the three main constituents), 2% light metals (~1.4 kg, the weight of a bottle of wine) and nearly 98% nonmetals (mostly water).

  6. Iron - Wikipedia

    en.wikipedia.org/wiki/Iron

    Iron shows the characteristic chemical properties of the transition metals, namely the ability to form variable oxidation states differing by steps of one and a very large coordination and organometallic chemistry: indeed, it was the discovery of an iron compound, ferrocene, that revolutionalized the latter field in the 1950s. [59]

  7. Goldschmidt classification - Wikipedia

    en.wikipedia.org/wiki/Goldschmidt_classification

    The Goldschmidt classification, [1] [2] developed by Victor Goldschmidt (1888–1947), is a geochemical classification which groups the chemical elements within the Earth according to their preferred host phases into lithophile (rock-loving), siderophile (iron-loving), chalcophile (sulfide ore-loving or chalcogen-loving), and atmophile (gas-loving) or volatile (the element, or a compound in ...

  8. Nuclear fusion - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fusion

    Some lighter stars also form these elements in the outer parts of the stars over long periods of time, by absorbing energy from fusion in the inside of the star, by absorbing neutrons that are emitted from the fusion process. All of the elements heavier than iron have some potential energy to release, in theory.

  9. Zinc - Wikipedia

    en.wikipedia.org/wiki/Zinc

    Zinc is more reactive than iron or steel and thus will attract almost all local oxidation until it completely corrodes away. [125] A protective surface layer of oxide and carbonate (Zn 5 (OH) 6 (CO 3) 2) forms as the zinc corrodes. [126] This protection lasts even after the zinc layer is scratched but degrades through time as the zinc corrodes ...