enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules.

  3. Finite field arithmetic - Wikipedia

    en.wikipedia.org/wiki/Finite_field_arithmetic

    By making a modular multiplicative inverse table for the finite field and doing a lookup. By mapping to a composite field where inversion is simpler, and mapping back. By constructing a special integer (in case of a finite field of a prime order) or a special polynomial (in case of a finite field of a non-prime order) and dividing it by a. [7]

  4. Dual basis in a field extension - Wikipedia

    en.wikipedia.org/wiki/Dual_basis_in_a_field...

    This requires the property that the field trace Tr L/K provides a non-degenerate quadratic form over K. This can be guaranteed if the extension is separable ; it is automatically true if K is a perfect field , and hence in the cases where K is finite, or of characteristic zero.

  5. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    The theory of finite fields, whose origins can be traced back to the works of Gauss and Galois, has played a part in various branches of mathematics.Due to the applicability of the concept in other topics of mathematics and sciences like computer science there has been a resurgence of interest in finite fields and this is partly due to important applications in coding theory and cryptography.

  6. Galois geometry - Wikipedia

    en.wikipedia.org/wiki/Galois_geometry

    The Fano plane, the projective plane over the field with two elements, is one of the simplest objects in Galois geometry.. Galois geometry (named after the 19th-century French mathematician Évariste Galois) is the branch of finite geometry that is concerned with algebraic and analytic geometry over a finite field (or Galois field). [1]

  7. Conway polynomial (finite fields) - Wikipedia

    en.wikipedia.org/wiki/Conway_polynomial_(finite...

    While there is a unique finite field of order p n up to isomorphism, the representation of the field elements depends on the choice of irreducible polynomial. The Conway polynomial is a way of standardizing this choice. The non-zero elements of a finite field F form a cyclic group under multiplication, denoted F *.

  8. Permutation polynomial - Wikipedia

    en.wikipedia.org/wiki/Permutation_polynomial

    Let F q = GF(q) be the finite field of characteristic p, that is, the field having q elements where q = p e for some prime p.A polynomial f with coefficients in F q (symbolically written as f ∈ F q [x]) is a permutation polynomial of F q if the function from F q to itself defined by () is a permutation of F q.

  9. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    Apart from the trivial case of a zero-dimensional space over any field, a vector space over a field F has a finite number of elements if and only if F is a finite field and the vector space has a finite dimension. Thus we have F q, the unique finite field (up to isomorphism) with q elements. Here q must be a power of a prime (q = p m with p prime).