enow.com Web Search

  1. Ad

    related to: differential geometry do carmo pdf answers sheet template printable

Search results

  1. Results from the WOW.Com Content Network
  2. Manfredo do Carmo - Wikipedia

    en.wikipedia.org/wiki/Manfredo_do_Carmo

    Do Carmo's main research interests were Riemannian geometry and the differential geometry of surfaces. [3]In particular, he worked on rigidity and convexity of isometric immersions, [26] [27] stability of hypersurfaces [28] [29] and of minimal surfaces, [30] [31] topology of manifolds, [32] isoperimetric problems, [33] minimal submanifolds of a sphere, [34] [35] and manifolds of constant mean ...

  3. Cartan–Hadamard theorem - Wikipedia

    en.wikipedia.org/wiki/Cartan–Hadamard_theorem

    Helgason, Sigurdur (1978), Differential geometry, Lie groups and symmetric spaces, Pure and Applied Mathematics 80, New York: Academic Press, pp. xvi+628, ISBN 0-12-338460-5. Lang, Serge (1999), Fundamentals of differential geometry, Graduate Texts in Mathematics, vol. 191, Berlin, New York: Springer-Verlag, ISBN 978-0-387-98593-0, MR 1666820

  4. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The differential geometry of surfaces revolves around the study of geodesics. It is still an open question whether every Riemannian metric on a 2-dimensional local chart arises from an embedding in 3-dimensional Euclidean space: the theory of geodesics has been used to show this is true in the important case when the components of the metric ...

  5. Template : Sharpe Differential Geometry: Cartan's ...

    en.wikipedia.org/wiki/Template:Sharpe...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more

  6. Beltrami's theorem - Wikipedia

    en.wikipedia.org/wiki/Beltrami's_theorem

    In the mathematical field of differential geometry, any (pseudo-)Riemannian metric determines a certain class of paths known as geodesics. Beltrami's theorem, named for Italian mathematician Eugenio Beltrami, is a result on the inverse problem of determining a (pseudo-)Riemannian metric from its geodesics.

  7. Bonnet theorem - Wikipedia

    en.wikipedia.org/wiki/Bonnet_theorem

    In the mathematical field of differential geometry, the fundamental theorem of surface theory deals with the problem of prescribing the geometric data of a submanifold of Euclidean space. Originally proved by Pierre Ossian Bonnet in 1867, it has since been extended to higher dimensions and non-Euclidean contexts.

  8. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    The differential-geometric properties of a parametric curve (such as its length, its Frenet frame, and its generalized curvature) are invariant under reparametrization and therefore properties of the equivalence class itself. The equivalence classes are called C r-curves and are central objects studied in the differential geometry of curves.

  9. Darboux frame - Wikipedia

    en.wikipedia.org/wiki/Darboux_frame

    In the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non- umbilic point of a surface embedded in Euclidean space .

  1. Ad

    related to: differential geometry do carmo pdf answers sheet template printable