enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rescorla–Wagner model - Wikipedia

    en.wikipedia.org/wiki/Rescorla–Wagner_model

    Van Hamme and Wasserman have extended the original Rescorla–Wagner (RW) model and introduced a new factor in their revised RW model in 1994: [3] They suggested that not only conditioned stimuli physically present on a given trial can undergo changes in their associative strength, the associative value of a CS can also be altered by a within-compound-association with a CS present on that trial.

  3. Variational method (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Variational_method...

    In quantum mechanics, the variational method is one way of finding approximations to the lowest energy eigenstate or ground state, and some excited states. This allows calculating approximate wavefunctions such as molecular orbitals. [1] The basis for this method is the variational principle. [2] [3]

  4. Hamilton's principle - Wikipedia

    en.wikipedia.org/wiki/Hamilton's_principle

    Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.

  5. Lippmann–Schwinger equation - Wikipedia

    en.wikipedia.org/wiki/Lippmann–Schwinger_equation

    The idea is that whatever physical process one is trying to study may be modeled as a scattering process of these well separated bound states. This process is described by the full Hamiltonian H, but once it's over, all of the new elementary particles and new bound states separate again and one finds a new noninteracting state called the out ...

  6. On shell and off shell - Wikipedia

    en.wikipedia.org/wiki/On_shell_and_off_shell

    This is an example of an equation that holds off shell, since it is true for any fields configuration regardless of whether it respects the equations of motion (in this case, the Euler–Lagrange equation given above). However, we can derive an on shell equation by simply substituting the Euler–Lagrange equation:

  7. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of ...

  8. De Broglie–Bohm theory - Wikipedia

    en.wikipedia.org/wiki/De_Broglie–Bohm_theory

    In the "quantum trajectory" method, one samples the quantum wavefunction with a mesh of quadrature points. One then evolves the quadrature points in time according to the Bohm equations of motion. At each time step, one then re-synthesizes the wavefunction from the points, recomputes the quantum forces, and continues the calculation.

  9. Madelung equations - Wikipedia

    en.wikipedia.org/wiki/Madelung_equations

    In theoretical physics, the Madelung equations, or the equations of quantum hydrodynamics, are Erwin Madelung's alternative formulation of the Schrödinger equation for a spinless non relativistic particle, written in terms of hydrodynamical variables, similar to the Navier–Stokes equations of fluid dynamics. [1]