Search results
Results from the WOW.Com Content Network
This page was last edited on 14 November 2020, at 20:25 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.
The circle is an instance of a conic section and the nine-point circle is an instance of the general nine-point conic that has been constructed with relation to a triangle ABC and a fourth point P, where the particular nine-point circle instance arises when P is the orthocenter of ABC.
In homogeneous coordinates, each conic section with the equation of a circle has the form + + = It can be proven that a conic section is a circle exactly when it contains (when extended to the complex projective plane) the points I(1: i: 0) and J(1: −i: 0).
A conic is defined as the locus of points for each of which the distance to the focus divided by the distance to the directrix is a fixed positive constant, called the eccentricity e. If 0 < e < 1 the conic is an ellipse, if e = 1 the conic is a parabola, and if e > 1 the conic is a hyperbola.
The ellipse, parabola, and hyperbola are viewed as conics in projective geometry, and each conic determines a relation of pole and polar between points and lines. Using these concepts, "two diameters are conjugate when each is the polar of the figurative point of the other."
The center of a conic, if it exists, is a point that bisects all the chords of the conic that pass through it. This property can be used to calculate the coordinates of the center, which can be shown to be the point where the gradient of the quadratic function Q vanishes—that is, [8] = [,] = [,].
Pencils of circles: in the pencil of red circles, the only degenerate conic is the horizontal axis; the pencil of blue circles has three degenerate conics, the vertical axis and two circles of radius zero. The conic section with equation = is degenerate as its equation can be written as () (+) =, and corresponds to two intersecting lines ...