Search results
Results from the WOW.Com Content Network
In vector spaces, the Euclidean norm is a measure of magnitude used to define a distance between two points in space. In physics, magnitude can be defined as quantity or distance. An order of magnitude is typically defined as a unit of distance between one number and another's numerical places on the decimal scale.
Distance traveled by light in vacuum in one second (a light-second, exactly 299,792,458 m by definition of the speed of light) 384.4 Mm Moon's orbital distance from Earth 10 9: 1 gigameter 1.39 Gm Diameter of the Sun: 5.15 Gm Greatest mileage ever recorded by a car (3.2 million miles by a 1966 Volvo P-1800S) [38] 10 10: 10 Gm: 18 Gm
Apparent magnitude, the brightness of an object as it appears in the night sky. Absolute magnitude, which measures the luminosity of an object (or reflected light for non-luminous objects like asteroids); it is the object's apparent magnitude as seen from a specific distance, conventionally 10 parsecs (32.6 light years).
In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude or length of the vector. This norm can be defined as the square root of the inner product of a vector with itself.
While distance is a scalar quantity, or a magnitude, displacement is a vector quantity with both magnitude and direction. In general, the vector measuring the difference between two locations (the relative position ) is sometimes called the directed distance . [ 7 ]
Distance moduli are most commonly used when expressing the distance to other galaxies in the relatively nearby universe.For example, the Large Magellanic Cloud (LMC) is at a distance modulus of 18.5, [2] the Andromeda Galaxy's distance modulus is 24.4, [3] and the galaxy NGC 4548 in the Virgo Cluster has a DM of 31.0. [4]
An object's absolute magnitude is defined to be equal to the apparent magnitude that the object would have if it were viewed from a distance of exactly 10 parsecs (32.6 light-years), without extinction (or dimming) of its light due to absorption by interstellar matter and cosmic dust. By hypothetically placing all objects at a standard ...
That is (unlike road distance with one-way streets) the distance between two points does not depend on which of the two points is the start and which is the destination. [11] It is positive, meaning that the distance between every two distinct points is a positive number, while the distance from any point to itself is zero. [11]