Search results
Results from the WOW.Com Content Network
In general outline, photosynthesis is the opposite of cellular respiration: while photosynthesis is a process of reduction of carbon dioxide to carbohydrates, cellular respiration is the oxidation of carbohydrates or other nutrients to carbon dioxide. Nutrients used in cellular respiration include carbohydrates, amino acids and fatty acids.
The process of photosynthesis splits a water molecule (H 2 O), releasing oxygen (O 2) into the atmosphere, and reducing carbon dioxide (CO 2) to release the hydrogen atoms that fuel the metabolic process of primary production. Plants convert and store the energy of the photons into the chemical bonds of simple sugars during
Ecosystem respiration is the production portion of carbon dioxide in an ecosystem's carbon flux, while photosynthesis typically accounts for the majority of the ecosystem's carbon consumption. [3] Carbon is cycled throughout the ecosystem as various factors continue to uptake or release the carbon in different circumstances.
Cyanobacteria is the only prokaryotic group that performs oxygenic photosynthesis. Anoxygenic photosynthetic bacteria use PSI- and PSII-like photosystems, which are pigment protein complexes for capturing light. [5] Both of these photosystems use bacteriochlorophyll. There are multiple hypotheses for how oxygenic photosynthesis evolved.
Plants synthesize carbohydrates from carbon dioxide and water through photosynthesis, allowing them to store energy absorbed from sunlight internally. [2] When animals and fungi consume plants, they use cellular respiration to break down these stored carbohydrates to make energy available to cells. [2]
Autotrophs use light, carbon dioxide (CO 2), and water to form oxygen and complex organic compounds, mainly through the process of photosynthesis (green arrow). Both types of organisms use such compounds via cellular respiration to both generate ATP and again form CO 2 and water (two red arrows).
Although many texts list a product of photosynthesis as C 6 H 12 O 6, this is mainly for convenience to match the equation of aerobic respiration, where six-carbon sugars are oxidized in mitochondria. The carbohydrate products of the Calvin cycle are three-carbon sugar phosphate molecules, or "triose phosphates", namely, glyceraldehyde-3 ...
The team claims C 4 rice could produce up to 50% more grain—and be able to do it with less water and nutrients. [36] [37] [38] The researchers have already identified genes needed for C 4 photosynthesis in rice and are now looking towards developing a prototype C 4 rice plant.